Module:Utils: Difference between revisions

Fredg999 (talk | contribs)
m Forgot p
ArrowHead294 (talk | contribs)
mNo edit summary
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
local getArgs = require('Module:Arguments').getArgs
local p = {}
local p = {}
 
-- check if a table contains x
local get_args = require("Module:Arguments").getArgs
local yesno = require("Module:Yesno")
 
-- Trim a string (remove leading and trailing, but not interior, whitespace)
function p.trim(s)
  return s:match("^%s*(.-)%s*$")
end
 
-- Wrapper function for template access to [[Module:Yesno]]
function p._yesno(frame)
return yesno(frame.args["input"], frame.args["default"])
end
 
-- Check if a table contains x
function p.table_contains(tbl, x)
function p.table_contains(tbl, x)
    for i = 1, #tbl do
for i = 1, #tbl do
        if x == tbl[i] then  
if x == tbl[i] then
            return true  
return true
        end
end
    end
end
    return false
return false
end
end


-- return the first index with the given value (or nil if not found)
-- Return the first index with the given value (or nil if not found)
function p.index_of(array, value)
function p.index_of(array, value)
for i, v in ipairs(array) do
for i, v in ipairs(array) do
Line 22: Line 34:
end
end


-- evaluate input on error use default; cannot be used with {{#invoke:}}
-- Check whether the input is a non-empty string
function p.value_provided(s)
return type(s) == "string" and #s > 0
end
 
-- Evaluate input on error use default; cannot be used with {{#invoke:}}
function p.eval_num_arg(input, def_value)
function p.eval_num_arg(input, def_value)
local result = input
local result = input
if type(input) ~= 'number' then
if type(input) ~= "number" then
result = def_value
result = def_value
if type(input) == 'string' then
if type(input) == "string" then
-- check for fraction notation
-- Check for fraction notation
if input:match('/') == '/' then
if input:match("/") == "/" then
local denominator = 1
local numerator, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
input, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
result = (tonumber(numerator) or def_value) / (tonumber(denominator) or 1)
result = (tonumber(input) or def_value)/(tonumber(denominator) or 1)
else
else
input = input:match("^%s*(.-)%s*$")
result = tonumber(input)
result = tonumber(input)
end
end
Line 42: Line 57:
end
end


-- return logarithm base b of x
-- Return logarithm base b of x
function p.log(frame)
function p.log(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._log(args[1], args[2])
return p._log(args[1], args[2])
end
end
 
local LN_2 = math.log(2)
-- Return logarithm base 2 of x
function p.log2(x)
return math.log(x) / LN_2
end


function p._log(x, b)
function p._log(x, b)
Line 53: Line 74:
-- b defaults to 2 ("octave")
-- b defaults to 2 ("octave")
b = p.eval_num_arg(b, 2)
b = p.eval_num_arg(b, 2)
return math.log(x)/math.log(b)
return math.log(x) / math.log(b)
end
 
-- Return greatest common divisor of a and b
function p.gcd(frame)
local args = get_args(frame)
return p._gcd(args[1], args[2])
end
end


-- return x rounded to places decimal places
function p._gcd(a, b)
if b ~= 0 then
return p._gcd(b, a % b)
else
return math.abs(a)
end
end
 
-- Return x rounded to places decimal places
function p.round_dec(frame)
function p.round_dec(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._round_dec(args[1], args[2])
return p._round_dec(args[1], args[2])
end
end
Line 67: Line 102:
-- places defaults to 0
-- places defaults to 0
places = p.eval_num_arg(places, 0)
places = p.eval_num_arg(places, 0)
return math.floor (x * 10^places + 0.5)/10^places
return math.floor(x * 10 ^ places + 0.5) / 10 ^ places
end
end


-- return x rounded to a precision of prec significant figures
-- Return x rounded to a precision of prec significant figures
function p.round(frame)
function p.round(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._round(args[1], args[2])
return p._round(args[1], args[2])
end
end


function p._round(x, prec)
function p._round(x, prec)
Line 88: Line 123:
end
end


-- cached list of primes for is_prime
-- Cached list of primes for is_prime
local primes = {
local primes_cache = {
[0] = false,
[0] = false,
[1] = false
[1] = false,
}
}


-- returns true if integer n is prime; cannot be used with {{#invoke:}}
-- Returns true if integer n is prime; cannot be used with {{#invoke:}}
function p.is_prime(n)
function p.is_prime(n)
local cached = primes[n]
local cached = primes_cache[n]
if cached ~= nil then
if cached ~= nil then
return cached
return cached
Line 102: Line 137:
for i = 2, math.sqrt(n) do
for i = 2, math.sqrt(n) do
if n % i == 0 then
if n % i == 0 then
primes[n] = false
primes_cache[n] = false
return false
return false
end
end
end
end
primes[n] = true
primes_cache[n] = true
return true  
return true
end
end


-- returns prime factorization of integer n > 1; cannot be used with {{#invoke:}}
-- Returns prime factorization of integer n > 1; cannot be used with {{#invoke:}}
-- note: the order of keys is not specified for Lua tables
-- Note: the order of keys is not specified for Lua tables
function p.prime_factorization_raw(n)
function p.prime_factorization_raw(n)
local factors = {}
local factors = {}
Line 131: Line 166:
end
end


-- returns prime factorization of integer n > 2 (with wiki markup for exponents)
-- Returns prime factorization of integer n > 2 (with wiki markup for exponents)
function p.prime_factorization(frame)
function p.prime_factorization(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._prime_factorization(args[1])
return p._prime_factorization(p.eval_num_arg(args[1], 12)) -- default to 12
end
end


Line 142: Line 177:
end
end
local factors, powers = {}, {}
local factors, powers = {}, {}
local new_number = p.eval_num_arg(n, 12)
local new_number = n
for i = 2, n do
for i = 2, n do
if p.is_prime(i) then
if p.is_prime(i) then
Line 148: Line 183:
factors[#factors + 1] = i
factors[#factors + 1] = i
powers[#factors] = 0
powers[#factors] = 0
while new_number % i == 0 do  
while new_number % i == 0 do
powers[#factors] = powers[#factors] + 1
powers[#factors] = powers[#factors] + 1
new_number = new_number / i
new_number = new_number / i
Line 166: Line 201:
end
end


-- returns signum(x); cannot be used with {{#invoke:}}
-- Returns signum(x); cannot be used with {{#invoke:}}
function p.signum(x)
function p.signum(x)
if type(x) ~= 'number' then
if type(x) ~= "number" then
return 0
return 0
end
end
if x > 0 then return 1 end
if x > 0 then
if x < 0 then return -1 end
return 1
end
if x < 0 then
return -1
end
return 0
return 0
end
end


-- returns the next Young diagram of the same size or nil; cannot be used with {{#invoke:}}
-- Returns the next Young diagram of the same size or nil; cannot be used with {{#invoke:}}
-- modifies the input table
-- Modifies the input table
function p.next_young_diagram(d)
function p.next_young_diagram(d)
if #d == 0 then
if #d == 0 then
Line 212: Line 251:
end
end


-- get monzo of n/d
-- stylua: ignore
-- e.g. for 3/2: {[2] = -1, [3] = 1}
p.primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
function p.get_monzo(n, d)
  101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
local primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,  
  211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}
  101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,  
  211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}  
local n_pf = p.prime_factorization_raw(n)
local d_pf = p.prime_factorization_raw(d)
local result = {}
for i=1,#primes do
local t = (n_pf[primes[i]] or 0) - (d_pf[primes[i]] or 0)
if t ~= 0 then
result[primes[i]] = t
end
end
return result
end


return p
return p