72edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 164459673 - Original comment: ** |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(206 intermediate revisions by 40 users not shown) | |||
Line 1: | Line 1: | ||
{{interwiki | |||
| de = 72-EDO | |||
| en = 72edo | |||
| es = | |||
| ja = | |||
}} | |||
{{Infobox ET}} | |||
{{Wikipedia|72 equal temperament}} | |||
{{ED intro}} | |||
Each step of 72edo is called a ''[[morion]]'' (plural ''moria)''. This produces a twelfth-tone tuning, with the whole tone measuring 200{{c}}, the same as in [[12edo]]. 72edo is also a superset of [[24edo]], a common and standard tuning of [[Arabic, Turkish, Persian music|Arabic music]], and has itself been used to tune Turkish music. | |||
Composers that used 72edo include [[Ivan Wyschnegradsky]], [[Julián Carrillo]] (who is better associated with [[96edo]]), [[Georg Friedrich Haas]], [[Ezra Sims]], [[Rick Tagawa]], [[James Tenney]], and the jazz musician [[Joe Maneri]]. | |||
== Theory == | |||
72edo approximates [[11-limit]] [[just intonation]] exceptionally well. It is [[consistent]] in the [[17-odd-limit]] and is the ninth [[zeta integral edo]]. It is the second edo (after [[58edo|58]]) to be [[consistency|distinctly consistent]] in the [[11-odd-limit]], the first edo to be [[consistency|consistent to distance 2]] in the 11-odd-limit, and the first edo to be consistent in the 12- and 13-[[odd prime sum limit|odd-prime-sum-limit]]. | |||
The octave, fifth and fourth are the same size as they would be in 12edo, 72, 42 and 30 steps respectively, but the classic major third ([[5/4]]) measures 23 steps, not 24, and other [[5-limit]] major intervals are one step flat of 12edo while minor ones are one step sharp. The septimal minor seventh ([[7/4]]) is 58 steps, while the undecimal semiaugmented fourth ([[11/8]]) is 33. | |||
[[ | |||
72et is the only 11-limit regular temperament which treats harmonics 24 to 28 as being equidistant in pitch, splits [[25/24]] into two equal [[49/48]][[~]][[50/49]]'s, and splits [[28/27]] into two equal [[55/54]]~[[56/55]]'s. It is also an excellent tuning for [[miracle]] temperament, especially the 11-limit version, and the related rank-3 temperament [[prodigy]], and is a good tuning for other temperaments and scales, including [[wizard]], [[harry]], [[catakleismic]], [[compton]], [[unidec]] and [[tritikleismic]]. | |||
The 13th harmonic (octave reduced) is so closely mapped on [[acoustic phi]] that 72edo could be treated as a 2.3.5.7.11.ϕ.17 temperament. | |||
72edo is the smallest multiple of 12edo that (just barely) has another diatonic fifth, 43\72, an extremely hard diatonic fifth suitable for a 5edo [[circulating temperament]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|72|columns=9}} | |||
{{Harmonics in equal|72|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 72edo (continued)}} | |||
=== Octave stretch === | |||
72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly [[stretched and compressed tuning|stretching the octave]], using tunings such as [[114edt]] or [[186ed6]]. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies. | |||
=== Subsets and supersets === | |||
Since 72 factors into primes as {{nowrap| 2<sup>3</sup> × 3<sup>2</sup> }}, 72edo has subset edos {{EDOs| 2, 3, 4, 6, 8, 9, 12, 18, 24, and 36 }}. [[144edo]], which doubles it, provides a possible correction to its approximate harmonic 13. | |||
== Intervals == | |||
{| class="wikitable center-all right-2 left-3" | |||
|- | |||
! # | |||
! Cents | |||
! Approximate ratios<ref group="note">{{sg|limit=19-limit}} For lower limits see [[Table of 72edo intervals]].</ref> | |||
! colspan="3" | [[Ups and downs notation]] | |||
! colspan="3" | [[SKULO interval names|SKULO interval names and notation]] | |||
! (K, S, U) | |||
|- | |||
| 0 | |||
| 0.0 | |||
| 1/1 | |||
| P1 | |||
| perfect unison | |||
| D | |||
| P1 | |||
| perfect unison | |||
| D | |||
| D | |||
|- | |||
| 1 | |||
| 16.7 | |||
| 81/80, 91/90, 99/98, 100/99, 105/104 | |||
| ^1 | |||
| up unison | |||
| ^D | |||
| K1, L1 | |||
| comma-wide unison, large unison | |||
| KD, LD | |||
| KD | |||
|- | |||
| 2 | |||
| 33.3 | |||
| 45/44, 49/48, 50/49, 55/54, 64/63 | |||
| ^^ | |||
| dup unison | |||
| ^^D | |||
| S1, O1 | |||
| super unison, on unison | |||
| SD, OD | |||
| SD | |||
|- | |||
| 3 | |||
| 50.0 | |||
| 33/32, 36/35, 40/39 | |||
| ^<sup>3</sup>1, v<sup>3</sup>m2 | |||
| trup unison, trudminor 2nd | |||
| ^<sup>3</sup>D, v<sup>3</sup>Eb | |||
| U1, H1, hm2 | |||
| uber unison, hyper unison, hypominor 2nd | |||
| UD, HD, uEb | |||
| UD, uEb | |||
|- | |||
| 4 | |||
| 66.7 | |||
| 25/24, 26/25, 27/26, 28/27 | |||
| vvm2 | |||
| dudminor 2nd | |||
| vvEb | |||
| kkA1, sm2 | |||
| classic aug unison, subminor 2nd | |||
| kkD#, sEb | |||
| sD#, (kkD#), sEb | |||
|- | |||
| 5 | |||
| 83.3 | |||
| 20/19, 21/20, 22/21 | |||
| vm2 | |||
| downminor 2nd | |||
| vEb | |||
| kA1, lm2 | |||
| comma-narrow aug unison, little minor 2nd | |||
| kD#, lEb | |||
| kD#, kEb | |||
|- | |||
| 6 | |||
| 100.0 | |||
| 17/16, 18/17, 19/18 | |||
| m2 | |||
| minor 2nd | |||
| Eb | |||
| m2 | |||
| minor 2nd | |||
| Eb | |||
| Eb | |||
|- | |||
| 7 | |||
| 116.7 | |||
| 15/14, 16/15 | |||
| ^m2 | |||
| upminor 2nd | |||
| ^Eb | |||
| Km2 | |||
| classic minor 2nd | |||
| KEb | |||
| KEb | |||
|- | |||
| 8 | |||
| 133.3 | |||
| 13/12, 14/13, 27/25 | |||
| ^^m2, v~2 | |||
| dupminor 2nd, downmid 2nd | |||
| ^^Eb | |||
| Om2 | |||
| on minor 2nd | |||
| OEb | |||
| SEb | |||
|- | |||
| 9 | |||
| 150.0 | |||
| 12/11 | |||
| ~2 | |||
| mid 2nd | |||
| v<sup>3</sup>E | |||
| N2 | |||
| neutral 2nd | |||
| UEb/uE | |||
| UEb/uE | |||
|- | |||
| 10 | |||
| 166.7 | |||
| 11/10 | |||
| ^~2, vvM2 | |||
| upmid 2nd, dudmajor 2nd | |||
| vvE | |||
| oM2 | |||
| off major 2nd | |||
| oE | |||
| sE | |||
|- | |||
| 11 | |||
| 183.3 | |||
| 10/9 | |||
| vM2 | |||
| downmajor 2nd | |||
| vE | |||
| kM2 | |||
| classic/comma-narrow major 2nd | |||
| kE | |||
| kE | |||
|- | |||
| 12 | |||
| 200.0 | |||
| 9/8 | |||
| M2 | |||
| major 2nd | |||
| E | |||
| M2 | |||
| major 2nd | |||
| E | |||
| E | |||
|- | |||
| 13 | |||
| 216.7 | |||
| 17/15, 25/22 | |||
| ^M2 | |||
| upmajor 2nd | |||
| ^E | |||
| LM2 | |||
| large major 2nd | |||
| LE | |||
| KE | |||
|- | |||
| 14 | |||
| 233.3 | |||
| 8/7 | |||
| ^^M2 | |||
| dupmajor 2nd | |||
| ^^E | |||
| SM2 | |||
| supermajor 2nd | |||
| SE | |||
| SE | |||
|- | |||
| 15 | |||
| 250.0 | |||
| 15/13, 22/19 | |||
| ^<sup>3</sup>M2, <br>v<sup>3</sup>m3 | |||
| trupmajor 2nd,<br>trudminor 3rd | |||
| ^<sup>3</sup>E, <br>v<sup>3</sup>F | |||
| HM2, hm3 | |||
| hypermajor 2nd, hypominor 3rd | |||
| HE, hF | |||
| UE, uF | |||
|- | |||
| 16 | |||
| 266.7 | |||
| 7/6 | |||
| vvm3 | |||
| dudminor 3rd | |||
| vvF | |||
| sm3 | |||
| subminor 3rd | |||
| sF | |||
| sF | |||
|- | |||
| 17 | |||
| 283.3 | |||
| 13/11, 20/17 | |||
| vm3 | |||
| downminor 3rd | |||
| vF | |||
| lm3 | |||
| little minor 3rd | |||
| lF | |||
| kF | |||
|- | |||
| 18 | |||
| 300.0 | |||
| 19/16, 25/21, 32/27 | |||
| m3 | |||
| minor 3rd | |||
| F | |||
| m3 | |||
| minor 3rd | |||
| F | |||
| F | |||
|- | |||
| 19 | |||
| 316.7 | |||
| 6/5 | |||
| ^m3 | |||
| upminor 3rd | |||
| ^F | |||
| Km3 | |||
| classic minor 3rd | |||
| KF | |||
| KF | |||
|- | |||
| 20 | |||
| 333.3 | |||
| 17/14, 39/32, 40/33 | |||
| ^^m3, v~3 | |||
| dupminor 3rd, downmid 3rd | |||
| ^^F | |||
| Om3 | |||
| on minor third | |||
| OF | |||
| SF | |||
|- | |||
| 21 | |||
| 350.0 | |||
| 11/9, 27/22 | |||
| ~3 | |||
| mid 3rd | |||
| ^<sup>3</sup>F | |||
| N3 | |||
| neutral 3rd | |||
| UF/uF# | |||
| UF/uF# | |||
|- | |||
| 22 | |||
| 366.7 | |||
| 16/13, 21/17, 26/21 | |||
| ^~3, vvM3 | |||
| upmid 3rd, dudmajor 3rd | |||
| vvF# | |||
| oM3 | |||
| off major 3rd | |||
| oF# | |||
| sF# | |||
|- | |||
| 23 | |||
| 383.3 | |||
| 5/4 | |||
| vM3 | |||
| downmajor 3rd | |||
| vF# | |||
| kM3 | |||
| classic major 3rd | |||
| kF# | |||
| kF# | |||
|- | |||
| 24 | |||
| 400.0 | |||
| 24/19 | |||
| M3 | |||
| major 3rd | |||
| F# | |||
| M3 | |||
| major 3rd | |||
| F# | |||
| F# | |||
|- | |||
| 25 | |||
| 416.7 | |||
| 14/11 | |||
| ^M3 | |||
| upmajor 3rd | |||
| ^F# | |||
| LM3 | |||
| large major 3rd | |||
| LF# | |||
| KF# | |||
|- | |||
| 26 | |||
| 433.3 | |||
| 9/7 | |||
| ^^M3 | |||
| dupmajor 3rd | |||
| ^^F# | |||
| SM3 | |||
| supermajor 3rd | |||
| SF# | |||
| SF# | |||
|- | |||
| 27 | |||
| 450.0 | |||
| 13/10, 22/17 | |||
| ^<sup>3</sup>M3, v<sup>3</sup>4 | |||
| trupmajor 3rd, trud 4th | |||
| ^<sup>3</sup>F#, v<sup>3</sup>G | |||
| HM3, h4 | |||
| hypermajor 3rd, hypo 4th | |||
| HF#, hG | |||
| UF#, uG | |||
|- | |||
| 28 | |||
| 466.7 | |||
| 17/13, 21/16 | |||
| vv4 | |||
| dud 4th | |||
| vvG | |||
| s4 | |||
| sub 4th | |||
| sG | |||
| sG | |||
|- | |||
| 29 | |||
| 483.3 | |||
| 33/25 | |||
| v4 | |||
| down 4th | |||
| vG | |||
| l4 | |||
| little 4th | |||
| lG | |||
| kG | |||
|- | |||
| 30 | |||
| 500.0 | |||
| 4/3 | |||
| P4 | |||
| perfect 4th | |||
| G | |||
| P4 | |||
| perfect 4th | |||
| G | |||
| G | |||
|- | |||
| 31 | |||
| 516.7 | |||
| 27/20 | |||
| ^4 | |||
| up 4th | |||
| ^G | |||
| K4 | |||
| comma-wide 4th | |||
| KG | |||
| KG | |||
|- | |||
| 32 | |||
| 533.3 | |||
| 15/11, 19/14, ''26/19'' | |||
| ^^4, v~4 | |||
| dup 4th, downmid 4th | |||
| ^^G | |||
| O4 | |||
| on 4th | |||
| OG | |||
| SG | |||
|- | |||
| 33 | |||
| 550.0 | |||
| 11/8 | |||
| ~4 | |||
| mid 4th | |||
| ^<sup>3</sup>G | |||
| U4/N4 | |||
| uber 4th / neutral 4th | |||
| UG | |||
| UG | |||
|- | |||
| 34 | |||
| 566.7 | |||
| 18/13, 25/18 | |||
| ^~4, vvA4 | |||
| upmid 4th, dudaug 4th | |||
| vvG# | |||
| kkA4, sd5 | |||
| classic aug 4th, sub dim 5th | |||
| kkG#, sAb | |||
| SG#, (kkG#), sAb | |||
|- | |||
| 35 | |||
| 583.3 | |||
| 7/5 | |||
| vA4, vd5 | |||
| downaug 4th, <br>downdim 5th | |||
| vG#, vAb | |||
| kA4, ld5 | |||
| comma-narrow aug 4th, little dim 5th | |||
| kG#, lAb | |||
| kG#, kAb | |||
|- | |||
| 36 | |||
| 600.0 | |||
| 17/12, 24/17 | |||
| A4, d5 | |||
| aug 4th, dim 5th | |||
| G#, Ab | |||
| A4, d5 | |||
| aug 4th, dim 5th | |||
| G#, Ab | |||
| G#, Ab | |||
|- | |||
| 37 | |||
| 616.7 | |||
| 10/7 | |||
| ^A4, ^d5 | |||
| upaug 4th, updim 5th | |||
| ^G#, ^Ab | |||
| LA4, Kd5 | |||
| large aug 4th, comma-wide dim 5th | |||
| LG#, KAb | |||
| KG#, KAb | |||
|- | |||
| 38 | |||
| 633.3 | |||
| 13/9, 36/25 | |||
| v~5, ^^d5 | |||
| downmid 5th, <br>dupdim 5th | |||
| ^^Ab | |||
| SA4, KKd5 | |||
| super aug 4th, classic dim 5th | |||
| SG#, KKAb | |||
| SG#, SAb, (KKAb) | |||
|- | |||
| 39 | |||
| 650.0 | |||
| 16/11 | |||
| ~5 | |||
| mid 5th | |||
| v<sup>3</sup>A | |||
| u5/N5 | |||
| unter 5th / neutral 5th | |||
| uA | |||
| uA | |||
|- | |||
| 40 | |||
| 666.7 | |||
| ''19/13'', 22/15, 28/19 | |||
| vv5, ^~5 | |||
| dud 5th, upmid 5th | |||
| vvA | |||
| o5 | |||
| off 5th | |||
| oA | |||
| sA | |||
|- | |||
| 41 | |||
| 683.3 | |||
| 40/27 | |||
| v5 | |||
| down 5th | |||
| vA | |||
| k5 | |||
| comma-narrow 5th | |||
| kA | |||
| kA | |||
|- | |||
| 42 | |||
| 700.0 | |||
| 3/2 | |||
| P5 | |||
| perfect 5th | |||
| A | |||
| P5 | |||
| perfect 5th | |||
| A | |||
| A | |||
|- | |||
| 43 | |||
| 716.7 | |||
| 50/33 | |||
| ^5 | |||
| up 5th | |||
| ^A | |||
| L5 | |||
| large fifth | |||
| LA | |||
| KA | |||
|- | |||
| 44 | |||
| 733.3 | |||
| 26/17, 32/21 | |||
| ^^5 | |||
| dup 5th | |||
| ^^A | |||
| S5 | |||
| super fifth | |||
| SA | |||
| SA | |||
|- | |||
| 45 | |||
| 750.0 | |||
| 17/11, 20/13 | |||
| ^<sup>3</sup>5, v<sup>3</sup>m6 | |||
| trup 5th, trudminor 6th | |||
| ^<sup>3</sup>A, v<sup>3</sup>Bb | |||
| H5, hm6 | |||
| hyper fifth, hypominor 6th | |||
| HA, hBb | |||
| UA, uBb | |||
|- | |||
| 46 | |||
| 766.7 | |||
| 14/9 | |||
| vvm6 | |||
| dudminor 6th | |||
| vvBb | |||
| sm6 | |||
| superminor 6th | |||
| sBb | |||
| sBb | |||
|- | |||
| 47 | |||
| 783.3 | |||
| 11/7 | |||
| vm6 | |||
| downminor 6th | |||
| vBb | |||
| lm6 | |||
| little minor 6th | |||
| lBb | |||
| kBb | |||
|- | |||
| 48 | |||
| 800.0 | |||
| 19/12 | |||
| m6 | |||
| minor 6th | |||
| Bb | |||
| m6 | |||
| minor 6th | |||
| Bb | |||
| Bb | |||
|- | |||
| 49 | |||
| 816.7 | |||
| 8/5 | |||
| ^m6 | |||
| upminor 6th | |||
| ^Bb | |||
| Km6 | |||
| classic minor 6th | |||
| kBb | |||
| kBb | |||
|- | |||
| 50 | |||
| 833.3 | |||
| 13/8, 21/13, 34/21 | |||
| ^^m6, v~6 | |||
| dupminor 6th, downmid 6th | |||
| ^^Bb | |||
| Om6 | |||
| on minor 6th | |||
| oBb | |||
| sBb | |||
|- | |||
| 51 | |||
| 850.0 | |||
| 18/11, 44/27 | |||
| ~6 | |||
| mid 6th | |||
| v<sup>3</sup>B | |||
| N6 | |||
| neutral 6th | |||
| UBb, uB | |||
| UBb, uB | |||
|- | |||
| 52 | |||
| 866.7 | |||
| 28/17, 33/20, 64/39 | |||
| ^~6, vvM6 | |||
| upmid 6th, dudmajor 6th | |||
| vvB | |||
| oM6 | |||
| off major 6th | |||
| oB | |||
| sB | |||
|- | |||
| 53 | |||
| 883.3 | |||
| 5/3 | |||
| vM6 | |||
| downmajor 6th | |||
| vB | |||
| kM6 | |||
| classic major 6th | |||
| kB | |||
| kB | |||
|- | |||
| 54 | |||
| 900.0 | |||
| 27/16, 32/19, 42/25 | |||
| M6 | |||
| major 6th | |||
| B | |||
| M6 | |||
| major 6th | |||
| B | |||
| B | |||
|- | |||
| 55 | |||
| 916.7 | |||
| 17/10, 22/13 | |||
| ^M6 | |||
| upmajor 6th | |||
| ^B | |||
| LM6 | |||
| large major 6th | |||
| LB | |||
| KB | |||
|- | |||
| 56 | |||
| 933.3 | |||
| 12/7 | |||
| ^^M6 | |||
| dupmajor 6th | |||
| ^^B | |||
| SM6 | |||
| supermajor 6th | |||
| SB | |||
| SB | |||
|- | |||
| 57 | |||
| 950.0 | |||
| 19/11, 26/15 | |||
| ^<sup>3</sup>M6, <br>v<sup>3</sup>m7 | |||
| trupmajor 6th,<br>trudminor 7th | |||
| ^<sup>3</sup>B, <br>v<sup>3</sup>C | |||
| HM6, hm7 | |||
| hypermajor 6th, hypominor 7th | |||
| HB, hC | |||
| UB, uC | |||
|- | |||
| 58 | |||
| 966.7 | |||
| 7/4 | |||
| vvm7 | |||
| dudminor 7th | |||
| vvC | |||
| sm7 | |||
| subminor 7th | |||
| sC | |||
| sC | |||
|- | |||
| 59 | |||
| 983.3 | |||
| 30/17, 44/25 | |||
| vm7 | |||
| downminor 7th | |||
| vC | |||
| lm7 | |||
| little minor 7th | |||
| lC | |||
| kC | |||
|- | |||
| 60 | |||
| 1000.0 | |||
| 16/9 | |||
| m7 | |||
| minor 7th | |||
| C | |||
| m7 | |||
| minor 7th | |||
| C | |||
| C | |||
|- | |||
| 61 | |||
| 1016.7 | |||
| 9/5 | |||
| ^m7 | |||
| upminor 7th | |||
| ^C | |||
| Km7 | |||
| classic/comma-wide minor 7th | |||
| KC | |||
| KC | |||
|- | |||
| 62 | |||
| 1033.3 | |||
| 20/11 | |||
| ^^m7, v~7 | |||
| dupminor 7th, downmid 7th | |||
| ^^C | |||
| Om7 | |||
| on minor 7th | |||
| OC | |||
| SC | |||
|- | |||
| 63 | |||
| 1050.0 | |||
| 11/6 | |||
| ~7 | |||
| mid 7th | |||
| ^<sup>3</sup>C | |||
| N7, hd8 | |||
| neutral 7th, hypo dim 8ve | |||
| UC/uC#, hDb | |||
| UC/uC#, uDb | |||
|- | |||
| 64 | |||
| 1066.7 | |||
| 13/7, 24/13, 50/27 | |||
| ^~7, vvM7 | |||
| upmid 7th, dudmajor 7th | |||
| vvC# | |||
| oM7, sd8 | |||
| off major 7th, sub dim 8ve | |||
| oC#, sDb | |||
| sC#, sDb | |||
|- | |||
| 65 | |||
| 1083.3 | |||
| 15/8, 28/15 | |||
| vM7 | |||
| downmajor 7th | |||
| vC# | |||
| kM7, ld8 | |||
| classic major 7th, little dim 8ve | |||
| kC#, lDb | |||
| kC#, kDb | |||
|- | |||
| 66 | |||
| 1100.0 | |||
| 17/9, 32/17, 36/19 | |||
| M7 | |||
| major 7th | |||
| C# | |||
| M7, d8 | |||
| major 7th, dim 8ve | |||
| C#, Db | |||
| C#, Db | |||
|- | |||
| 67 | |||
| 1116.7 | |||
| 19/10, 21/11, 40/21 | |||
| ^M7 | |||
| upmajor 7th | |||
| ^C# | |||
| LM7, Kd8 | |||
| large major 7th, comma-wide dim 8ve | |||
| LC#, KDb | |||
| KC#, KDb | |||
|- | |||
| 68 | |||
| 1133.3 | |||
| 25/13, 27/14, 48/25, 52/27 | |||
| ^^M7 | |||
| dupmajor 7th | |||
| ^^C# | |||
| SM7, KKd8 | |||
| supermajor 7th, classic dim 8ve | |||
| SC#, KKDb | |||
| SC#, SDb, (KKDb) | |||
|- | |||
| 69 | |||
| 1150.0 | |||
| 35/18, 39/20, 64/33 | |||
| ^<sup>3</sup>M7, v<sup>3</sup>8 | |||
| trupmajor 7th, trud octave | |||
| ^<sup>3</sup>C#, v<sup>3</sup>D | |||
| HM7, u8, h8 | |||
| hypermajor 7th, unter 8ve, hypo 8ve | |||
| HC#, uD, hD | |||
| UC#, uDb, uD | |||
|- | |||
| 70 | |||
| 1166.7 | |||
| 49/25, 55/28, 63/32, 88/45, 96/49 | |||
| vv8 | |||
| dud octave | |||
| vvD | |||
| s8, o8 | |||
| sub 8ve, off 8ve | |||
| sD, oD | |||
| sD | |||
|- | |||
| 71 | |||
| 1183.3 | |||
| 99/50, 160/81, 180/91, 196/99, 208/105 | |||
| v8 | |||
| down octave | |||
| vD | |||
| k8, l8 | |||
| comma-narrow 8ve, little 8ve | |||
| kD, lD | |||
| kD | |||
|- | |||
| 72 | |||
| 1200.0 | |||
| 2/1 | |||
| P8 | |||
| perfect octave | |||
| D | |||
| P8 | |||
| perfect octave | |||
| D | |||
| D | |||
|} | |||
<references group="note" /> | |||
=== Interval quality and chord names in color notation === | |||
Combining ups and downs notation with [[color notation]], qualities can be loosely associated with colors: | |||
{| class="wikitable center-all" | |||
|- | |||
! Quality | |||
! [[Color notation|Color]] | |||
! Monzo format | |||
! Examples | |||
|- | |||
| dudminor | |||
| zo | |||
| (a b 0 1) | |||
| 7/6, 7/4 | |||
|- | |||
| minor | |||
| fourthward wa | |||
| (a b), b < -1 | |||
| 32/27, 16/9 | |||
|- | |||
| upminor | |||
| gu | |||
| (a b -1) | |||
| 6/5, 9/5 | |||
|- | |||
| rowspan="2" | dupminor, <br>downmid | |||
| luyo | |||
| (a b 1 0 -1) | |||
| 15/11 | |||
|- | |||
| tho | |||
| (a b 0 0 0 1) | |||
| 13/8, 13/9 | |||
|- | |||
| rowspan="2" | mid | |||
| ilo | |||
| (a b 0 0 1) | |||
| 11/9, 11/6 | |||
|- | |||
| lu | |||
| (a b 0 0 -1) | |||
| 12/11, 18/11 | |||
|- | |||
| rowspan="2" | upmid, <br>dudmajor | |||
| logu | |||
| (a b -1 0 1) | |||
| 11/10 | |||
|- | |||
| thu | |||
| (a b 0 0 0 -1) | |||
| 16/13, 18/13 | |||
|- | |||
| downmajor | |||
| yo | |||
| (a b 1) | |||
| 5/4, 5/3 | |||
|- | |||
| major | |||
| fifthward wa | |||
| (a b), b > 1 | |||
| 9/8, 27/16 | |||
|- | |||
| dupmajor | |||
| ru | |||
| (a b 0 -1) | |||
| 9/7, 12/7 | |||
|- | |||
| rowspan="2" | trupmajor, <br>trudminor | |||
| thogu | |||
| (a b -1 0 0 1) | |||
| 13/10 | |||
|- | |||
| thuyo | |||
| (a b 1 0 0 -1) | |||
| 15/13 | |||
|} | |||
All 72edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: | |||
{| class="wikitable center-all" | |||
|- | |||
! [[Color notation|Color of the 3rd]] | |||
! JI chord | |||
! Notes as edosteps | |||
! Notes of C chord | |||
! Written name | |||
! Spoken name | |||
|- | |||
| zo | |||
| 6:7:9 | |||
| 0-16-42 | |||
| C vvEb G | |||
| Cvvm | |||
| C dudminor | |||
|- | |||
| gu | |||
| 10:12:15 | |||
| 0-19-42 | |||
| C ^Eb G | |||
| C^m | |||
| C upminor | |||
|- | |||
| ilo | |||
| 18:22:27 | |||
| 0-21-42 | |||
| C v<span style="font-size: 90%; vertical-align: super;">3</span>E G | |||
| C~ | |||
| C mid | |||
|- | |||
| yo | |||
| 4:5:6 | |||
| 0-23-42 | |||
| C vE G | |||
| Cv | |||
| C downmajor or C down | |||
|- | |||
| ru | |||
| 14:18:27 | |||
| 0-26-42 | |||
| C ^^E G | |||
| C^^ | |||
| C dupmajor or C dup | |||
|} | |||
For a more complete list, see [[Ups and downs notation #Chord names in other EDOs]]. | |||
=== Relationship between primes and rings === | |||
In 72tet, there are 6 [[ring number|rings]]. 12edo is the plain ring; thus every 6 degrees is the 3-limit. | |||
Then, after each subsequent degree in reverse, a new prime limit is unveiled from it: | |||
* −1 degree (the down ring) corrects 81/64 to 5/4 via 80/81 | |||
* −2 degrees (the dud ring) corrects 16/9 to 7/4 via 63/64 | |||
* +3 degrees (the trup ring) corrects 4/3 to 11/8 via 33/32 | |||
* +2 degrees (the dup ring) corrects 128/81 to 13/8 via 1053/1024 | |||
* 0 degrees (the plain ring) corrects 256/243 to 17/16 via 4131/4096 | |||
* 0 degrees (the plain ring) corrects 32/27 to 19/16 via 513/512 | |||
Thus the product of a ratio's monzo with {{map| 0 0 -1 -2 3 2 0 0 }}, modulo 6, specifies which ring the ratio lies on. | |||
== Notations == | |||
=== Ups and downs notation === | |||
72edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | |||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp6}} | |||
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals: | |||
{{Sharpness-sharp6-qt}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[65edo#Sagittal notation|65-EDO]] and [[79edo#Sagittal notation|79]], and is a superset of the notations for EDOs [[36edo#Sagittal notation|36]], [[24edo#Sagittal notation|24]], [[18edo#Sagittal notation|18]], [[12edo#Sagittal notation|12]], [[8edo#Sagittal notation|8]], and [[6edo#Sagittal notation|6]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:72-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 719 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:72-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 695 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:72-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 711 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
From the appendix to [[The Sagittal Songbook]] by [[Jacob Barton|Jacob A. Barton]], a diagram of how to notate 72edo in the Revo flavor of Sagittal: | |||
[[File:72edo Sagittal.png|800px]] | |||
=== Ivan Wyschnegradsky's notation === | |||
{{Sharpness-sharp6-iw|72}} | |||
== Approximation to JI == | |||
[[File:72ed2.svg|250px|thumb|right|none|alt=alt : Your browser has no SVG support.|Selected intervals approximated in 72edo]] | |||
=== Interval mappings === | |||
{{Q-odd-limit intervals|72}} | |||
=== Zeta properties === | |||
72edo is the ninth [[zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[the Riemann zeta function and tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. | |||
[[File:plot72.png|alt=plot72.png|plot72.png]] | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| 15625/15552, 531441/524288 | |||
| {{Mapping| 72 114 167 }} | |||
| +0.839 | |||
| 0.594 | |||
| 3.56 | |||
|- | |||
| 2.3.5.7 | |||
| 225/224, 1029/1024, 4375/4374 | |||
| {{Mapping| 72 114 167 202 }} | |||
| +0.822 | |||
| 0.515 | |||
| 3.09 | |||
|- | |||
| 2.3.5.7.11 | |||
| 225/224, 243/242, 385/384, 4000/3993 | |||
| {{Mapping| 72 114 167 202 249 }} | |||
| +0.734 | |||
| 0.493 | |||
| 2.96 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 169/168, 225/224, 243/242, 325/324, 385/384 | |||
| {{Mapping| 72 114 167 202 249 266 }} | |||
| +0.936 | |||
| 0.638 | |||
| 3.82 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 169/168, 221/220, 225/224, 243/242, 273/272, 325/324 | |||
| {{Mapping| 72 114 167 202 249 266 294 }} | |||
| +0.975 | |||
| 0.599 | |||
| 3.59 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 153/152, 169/168, 210/209, 221/220, 225/224, 243/242, 273/272 | |||
| {{Mapping| 72 114 167 202 249 266 294 306 }} | |||
| +0.780 | |||
| 0.762 | |||
| 4.57 | |||
|} | |||
* 72et has lower relative errors than any previous equal temperaments in the 7-, 11-, 13-, 17-, and 19-limit. The next equal temperaments doing better in these subgroups are [[99edo|99]], [[270edo|270]], [[224edo|224]], [[494edo|494]], and [[217edo|217]], respectively. | |||
=== Commas === | |||
Commas tempered out by 72edo include… | |||
{| class="commatable wikitable center-1 center-2 right-4" | |||
|- | |||
! [[Harmonic limit|Prime<br>limit]] | |||
! [[Ratio]]<ref group="note">{{rd}}</ref> | |||
! [[Monzo]] | |||
! [[Cents]] | |||
! Name(s) | |||
|- | |||
| 3 | |||
| [[531441/524288|(12 digits)]] | |||
| {{Monzo| -19 12 }} | |||
| 23.46 | |||
| Pythagorean comma | |||
|- | |||
| 5 | |||
| [[15625/15552]] | |||
| {{Monzo| -6 -5 6 }} | |||
| 8.11 | |||
| Kleisma | |||
|- | |||
| 5 | |||
| [[34171875/33554432|(16 digits)]] | |||
| {{Monzo| -25 7 6 }} | |||
| 31.57 | |||
| [[Ampersand comma]] | |||
|- | |||
| 5 | |||
| [[129140163/128000000|(18 digits)]] | |||
| {{Monzo| -13 17 -6 }} | |||
| 15.35 | |||
| [[Graviton]] | |||
|- | |||
| 5 | |||
| <abbr title="7629394531250/7625597484987">(26 digits)</abbr> | |||
| {{Monzo| 1 -27 18 }} | |||
| 0.86 | |||
| [[Ennealimma]] | |||
|- | |||
| 7 | |||
| [[225/224]] | |||
| {{Monzo| -5 2 2 -1 }} | |||
| 7.71 | |||
| Marvel comma | |||
|- | |||
| 7 | |||
| [[1029/1024]] | |||
| {{Monzo| -10 1 0 3 }} | |||
| 8.43 | |||
| Gamelisma | |||
|- | |||
| 7 | |||
| [[2401/2400]] | |||
| {{Monzo| -5 -1 -2 4 }} | |||
| 0.72 | |||
| Breedsma | |||
|- | |||
| 7 | |||
| [[4375/4374]] | |||
| {{Monzo| -1 -7 4 1 }} | |||
| 0.40 | |||
| Ragisma | |||
|- | |||
| 7 | |||
| [[16875/16807]] | |||
| {{Monzo| 0 3 4 -5 }} | |||
| 6.99 | |||
| Mirkwai comma | |||
|- | |||
| 7 | |||
| [[19683/19600]] | |||
| {{Monzo| -4 9 -2 -2 }} | |||
| 7.32 | |||
| Cataharry comma | |||
|- | |||
| 7 | |||
| <abbr title="420175/419904">(12 digits)</abbr> | |||
| {{Monzo | -6 -8 2 5 }} | |||
| 1.12 | |||
| [[Wizma]] | |||
|- | |||
| 7 | |||
| <abbr title="250047/250000">(12 digits)</abbr> | |||
| {{Monzo| -4 6 -6 3 }} | |||
| 0.33 | |||
| [[Landscape comma]] | |||
|- | |||
| 11 | |||
| [[243/242]] | |||
| {{Monzo| -1 5 0 0 -2}} | |||
| 7.14 | |||
| Rastma | |||
|- | |||
| 11 | |||
| [[385/384]] | |||
| {{Monzo| -7 -1 1 1 1 }} | |||
| 4.50 | |||
| Keenanisma | |||
|- | |||
| 11 | |||
| [[441/440]] | |||
| {{Monzo| -3 2 -1 2 -1 }} | |||
| 3.93 | |||
| Werckisma | |||
|- | |||
| 11 | |||
| [[540/539]] | |||
| {{Monzo| 2 3 1 -2 -1 }} | |||
| 3.21 | |||
| Swetisma | |||
|- | |||
| 11 | |||
| [[1375/1372]] | |||
| {{Monzo| -2 0 3 -3 1 }} | |||
| 3.78 | |||
| Moctdel comma | |||
|- | |||
| 11 | |||
| [[3025/3024]] | |||
| {{Monzo| -4 -3 2 -1 2 }} | |||
| 0.57 | |||
| Lehmerisma | |||
|- | |||
| 11 | |||
| [[4000/3993]] | |||
| {{Monzo| 5 -1 3 0 -3 }} | |||
| 3.03 | |||
| Wizardharry comma | |||
|- | |||
| 11 | |||
| [[6250/6237]] | |||
| {{Monzo| 1 -4 5 -1 -1 }} | |||
| 3.60 | |||
| Liganellus comma | |||
|- | |||
| 11 | |||
| [[9801/9800]] | |||
| {{Monzo| -3 4 -2 -2 2 }} | |||
| 0.18 | |||
| Kalisma | |||
|- | |||
| 11 | |||
| <abbr title="1771561/1769472">(14 digits)</abbr> | |||
| {{Monzo| 16 -3 0 0 6 }} | |||
| 2.04 | |||
| [[Nexus comma]] | |||
|- | |||
| 13 | |||
| [[169/168]] | |||
| {{Monzo| -3 -1 0 -1 0 2 }} | |||
| 10.27 | |||
| Buzurgisma | |||
|- | |||
| 13 | |||
| [[325/324]] | |||
| {{Monzo| -2 -4 2 0 0 1 }} | |||
| 5.34 | |||
| Marveltwin comma | |||
|- | |||
| 13 | |||
| [[351/350]] | |||
| {{Monzo| -1 3 -2 -1 0 1 }} | |||
| 4.94 | |||
| Ratwolfsma | |||
|- | |||
| 13 | |||
| [[364/363]] | |||
| {{Monzo| 2 -1 0 1 -2 1 }} | |||
| 4.76 | |||
| Minor minthma | |||
|- | |||
| 13 | |||
| [[625/624]] | |||
| {{Monzo| -4 -1 4 0 0 -1 }} | |||
| 2.77 | |||
| Tunbarsma | |||
|- | |||
| 13 | |||
| [[676/675]] | |||
| {{Monzo| 2 -3 -2 0 0 2 }} | |||
| 2.56 | |||
| Island comma | |||
|- | |||
| 13 | |||
| [[729/728]] | |||
| {{Monzo| -3 6 0 -1 0 -1 }} | |||
| 2.38 | |||
| Squbema | |||
|- | |||
| 13 | |||
| [[1001/1000]] | |||
| {{Monzo| -3 0 -3 1 1 1 }} | |||
| 1.73 | |||
| Sinbadma | |||
|- | |||
| 13 | |||
| [[1575/1573]] | |||
| {{Monzo| 2 2 1 -2 -1 }} | |||
| 2.20 | |||
| Nicola | |||
|- | |||
| 13 | |||
| [[1716/1715]] | |||
| {{Monzo| 2 1 -1 -3 1 1 }} | |||
| 1.01 | |||
| Lummic comma | |||
|- | |||
| 13 | |||
| [[2080/2079]] | |||
| {{Monzo| 5 -3 1 -1 -1 1 }} | |||
| 0.83 | |||
| Ibnsinma | |||
|- | |||
| 13 | |||
| [[6656/6655]] | |||
| {{Monzo| 9 0 -1 0 -3 1 }} | |||
| 0.26012 | |||
| Jacobin comma | |||
|} | |||
<references group="note" /> | |||
=== Rank-2 temperaments === | |||
* [[List of edo-distinct 72et rank two temperaments]] | |||
72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit. | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |||
| 1 | |||
| 1\72 | |||
| 16.7 | |||
| 105/104 | |||
| [[Quincy]] | |||
|- | |||
| 1 | |||
| 5\72 | |||
| 83.3 | |||
| 21/20 | |||
| [[Marvolo]] | |||
|- | |||
| 1 | |||
| 7\72 | |||
| 116.7 | |||
| 15/14 | |||
| [[Miracle]] / benediction / manna | |||
|- | |||
| 1 | |||
| 17\72 | |||
| 283.3 | |||
| 13/11 | |||
| [[Neominor]] | |||
|- | |||
| 1 | |||
| 19\72 | |||
| 316.7 | |||
| 6/5 | |||
| [[Catakleismic]] | |||
|- | |||
| 1 | |||
| 25\72 | |||
| 416.7 | |||
| 14/11 | |||
| [[Sqrtphi]] | |||
|- | |||
| 1 | |||
| 29\72 | |||
| 483.3 | |||
| 45/34 | |||
| [[Hemiseven]] | |||
|- | |||
| 1 | |||
| 31\72 | |||
| 516.7 | |||
| 27/20 | |||
| [[Marvo]] / [[zarvo]] | |||
|- | |||
| 1 | |||
| 35\72 | |||
| 583.3 | |||
| 7/5 | |||
| [[Cotritone]] | |||
|- | |||
| 2 | |||
| 5\72 | |||
| 83.3 | |||
| 21/20 | |||
| [[Harry]] | |||
|- | |||
| 2 | |||
| 7\72 | |||
| 116.7 | |||
| 15/14 | |||
| [[Semimiracle]] | |||
|- | |||
| 2 | |||
| 11\72 | |||
| 183.3 | |||
| 10/9 | |||
| [[Unidec]] / hendec | |||
|- | |||
| 2 | |||
| 21\72<br>(19\72) | |||
| 316.7<br>(283.3) | |||
| 6/5<br>(13/11) | |||
| [[Bikleismic]] | |||
|- | |||
| 2 | |||
| 23\72<br>(13\72) | |||
| 383.3<br>(216.7) | |||
| 5/4<br>(17/15) | |||
| [[Wizard]] / lizard / gizzard | |||
|- | |||
| 3 | |||
| 11\72 | |||
| 183.3 | |||
| 10/9 | |||
| [[Mirkat]] | |||
|- | |||
| 3 | |||
| 19\72<br>(5\72) | |||
| 316.7<br>(83.3) | |||
| 6/5<br>(21/20) | |||
| [[Tritikleismic]] | |||
|- | |||
| 4 | |||
| 19\72<br>(1\72) | |||
| 316.7<br>(16.7) | |||
| 6/5<br>(105/104) | |||
| [[Quadritikleismic]] | |||
|- | |||
| 8 | |||
| 34\72<br>(2\72) | |||
| 566.7<br>(33.3) | |||
| 168/121<br>(55/54) | |||
| [[Octowerck]] / octowerckis | |||
|- | |||
| 8 | |||
| 35\72<br>(1\72) | |||
| 583.3<br>(16.7) | |||
| 7/5<br>(100/99) | |||
| [[Octoid]] / octopus | |||
|- | |||
| 9 | |||
| 19\72<br>(3\72) | |||
| 316.7<br>(50.0) | |||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] / ennealimnic | |||
|- | |||
| 9 | |||
| 23\72<br>(1\72) | |||
| 383.3<br>(16.7) | |||
| 5/4<br>(105/104) | |||
| [[Enneaportent]] | |||
|- | |||
| 12 | |||
| 23\72<br>(1\72) | |||
| 383.3<br>(16.7) | |||
| 5/4<br>(100/99) | |||
| [[Compton]] / comptone | |||
|- | |||
| 18 | |||
| 19\72<br>(1\72) | |||
| 316.7<br>(16.7) | |||
| 6/5<br>(105/104) | |||
| [[Hemiennealimmal]] | |||
|- | |||
| 24 | |||
| 23\72<br>(1\72) | |||
| 383.3<br>(16.7) | |||
| 5/4<br>(105/104) | |||
| [[Hours]] | |||
|- | |||
| 36 | |||
| 23\72<br>(1\72) | |||
| 383.3<br>(16.7) | |||
| 5/4<br>(81/80) | |||
| [[Gamelstearn]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | |||
* [[Smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]] | |||
* [[Blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]] | |||
* [[Keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]] | |||
* [[Genus24255et72|Euler(24255) genus in 72 equal]] | |||
* [[JuneGloom]] | |||
* [[Harry Partch's 43-tone scale]]: 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 | |||
* [[Magnetosphere scale|Magnetosphere]], [[Blackened skies]], [[Lost spirit]] | |||
* [[5- to 10-tone scales in 72edo]] | |||
=== Harmonic scale === | |||
Mode 8 of the harmonic series—[[overtone scale|harmonics 8 through 16]], octave repeating—is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). | |||
{| class="wikitable" | |||
|- | |||
! Harmonics in "Mode 8": | |||
| 8 | |||
| | |||
| 9 | |||
| | |||
| 10 | |||
| | |||
| 11 | |||
| | |||
| 12 | |||
| | |||
| 13 | |||
| | |||
| 14 | |||
| | |||
| 15 | |||
| | |||
| 16 | |||
|- | |||
! …as JI Ratio from 1/1: | |||
| 1/1 | |||
| | |||
| 9/8 | |||
| | |||
| 5/4 | |||
| | |||
| 11/8 | |||
| | |||
| 3/2 | |||
| | |||
| 13/8 | |||
| | |||
| 7/4 | |||
| | |||
| 15/8 | |||
| | |||
| 2/1 | |||
|- | |||
! …in cents: | |||
| 0 | |||
| | |||
| 203.9 | |||
| | |||
| 386.3 | |||
| | |||
| 551.3 | |||
| | |||
| 702.0 | |||
| | |||
| 840.5 | |||
| | |||
| 968.8 | |||
| | |||
| 1088.3 | |||
| | |||
| 1200.0 | |||
|- | |||
! Nearest degree of 72edo: | |||
| 0 | |||
| | |||
| 12 | |||
| | |||
| 23 | |||
| | |||
| 33 | |||
| | |||
| 42 | |||
| | |||
| 50 | |||
| | |||
| 58 | |||
| | |||
| 65 | |||
| | |||
| 72 | |||
|- | |||
! …in cents: | |||
| 0 | |||
| | |||
| 200.0 | |||
| | |||
| 383.3 | |||
| | |||
| 550.0 | |||
| | |||
| 700.0 | |||
| | |||
| 833.3 | |||
| | |||
| 966.7 | |||
| | |||
| 1083.3 | |||
| | |||
| 1200.0 | |||
|- | |||
! Steps as Freq. Ratio: | |||
| | |||
| 9:8 | |||
| | |||
| 10:9 | |||
| | |||
| 11:10 | |||
| | |||
| 12:11 | |||
| | |||
| 13:12 | |||
| | |||
| 14:13 | |||
| | |||
| 15:14 | |||
| | |||
| 16:15 | |||
| | |||
|- | |||
! …in cents: | |||
| | |||
| 203.9 | |||
| | |||
| 182.4 | |||
| | |||
| 165.0 | |||
| | |||
| 150.6 | |||
| | |||
| 138.6 | |||
| | |||
| 128.3 | |||
| | |||
| 119.4 | |||
| | |||
| 111.7 | |||
| | |||
|- | |||
! Nearest degree of 72edo: | |||
| | |||
| 12 | |||
| | |||
| 11 | |||
| | |||
| 10 | |||
| | |||
| 9 | |||
| | |||
| 8 | |||
| | |||
| 8 | |||
| | |||
| 7 | |||
| | |||
| 7 | |||
| | |||
|- | |||
! …in cents: | |||
| | |||
| 200.0 | |||
| | |||
| 183.3 | |||
| | |||
| 166.7 | |||
| | |||
| 150.0 | |||
| | |||
| 133.3 | |||
| | |||
| 133.3 | |||
| | |||
| 116.7 | |||
| | |||
| 116.7 | |||
| | |||
|} | |||
== Instruments == | |||
If one can get six 12edo instruments tuned a twelfth-tone apart, it is possible to use these instruments in combination to play the full gamut of 72edo (see Music). | |||
One can also use a skip fretting system: | |||
* [[Skip fretting system 72 2 27]] | |||
Alternatively, an appropriately mapped keyboard of sufficient size is usable for playing 72edo: | |||
* [[Lumatone mapping for 72edo]] | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/VwVp3RVao_k ''microtonal improvisation in 72edo''] (2025) | |||
; [[Ambient Esoterica]] | |||
* [https://www.youtube.com/watch?v=seWcDAoQjxY ''Goetic Synchronities''] (2023) | |||
* [https://www.youtube.com/watch?v=CrcdM1e2b6Q ''Rainy Day Generative Pillow''] (2024) | |||
; [[Jake Freivald]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3 ''Lazy Sunday'']{{dead link}} in the [[lazysunday]] scale | |||
{{Wikipedia|In vain (Haas)}} | |||
; [[Georg Friedrich Haas]] | |||
* [https://www.youtube.com/watch?v=ix4yA-c-Pi8 ''Blumenstück''] (2000) | |||
* [https://youtu.be/cmX-h7_us7A ''in vain''] (2000) ([https://www.universaledition.com/georg-friedrich-haas-278/works/in-vain-7566 score]) | |||
; [[Claudi Meneghin]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3 ''Twinkle canon – 72 edo'']{{dead link}} | |||
* [https://www.youtube.com/watch?v=zR0NDgh4944 ''The Miracle Canon'', 3-in-1 on a Ground] | |||
* [https://www.youtube.com/watch?v=w6Bckog1eOM ''Sicilienne in Miracle''] | |||
* [https://www.youtube.com/watch?v=QKeZLtFHfNU ''Arietta with 5 Variations'', for Organ] (2024) | |||
; [[Prent Rodgers]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 ''June Gloom #9'']{{dead link}} | |||
; [[Gene Ward Smith]] | |||
* [https://www.archive.org/details/Kotekant ''Kotekant''] [https://www.archive.org/download/Kotekant/kotekant.mp3 play] (2010) | |||
;[[Ivan Wyschnegradsky]] | |||
* [https://www.youtube.com/watch?v=RCcJHCkYQ6U Arc-en-ciel, for 6 pianos in twelfth tones, Op. 37] (1956) | |||
; [[James Tenney]] | |||
* [https://www.youtube.com/watch?v=jGsxqU1PhZs&list=OLAK5uy_mKyMEMZW7noeLncJnu-JT65go8w7403DA ''Changes for Six Harps''] | |||
; [[Xeno Ov Eleas]] | |||
* [https://www.youtube.com/watch?v=cx7I0NWem5w ''Χenomorphic Ghost Storm''] (2022) | |||
== External links == | |||
* [http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo] | |||
* [http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music | |||
* [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list | |||
* [https://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo] | |||
* [http://tonalsoft.com/enc/number/72edo.aspx 72-ed2 / 72-edo / 72-ET / 72-tone equal-temperament] on [[Tonalsoft Encyclopedia]] | |||
[[Category:Listen]] | |||
[[Category:Compton]] | |||
[[Category:Marvel]] | |||
[[Category:Miracle]] | |||
[[Category:Prodigy]] | |||
[[Category:Wizard]] |