|
|
(187 intermediate revisions by 38 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{interwiki |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | de = 72-EDO |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-03 14:27:01 UTC</tt>.<br>
| | | en = 72edo |
| : The original revision id was <tt>298251732</tt>.<br>
| | | es = |
| : The revision comment was: <tt></tt><br>
| | | ja = |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | }} |
| <h4>Original Wikitext content:</h4>
| | {{Infobox ET}} |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
| | {{Wikipedia|72 equal temperament}} |
| ----
| | {{ED intro}} |
| 72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music. | |
|
| |
|
| Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.
| | Each step of 72edo is called a ''[[morion]]'' (plural ''moria)''. This produces a twelfth-tone tuning, with the whole tone measuring 200{{c}}, the same as in [[12edo]]. 72edo is also a superset of [[24edo]], a common and standard tuning of [[Arabic, Turkish, Persian music|Arabic music]], and has itself been used to tune Turkish music. |
|
| |
|
| 72-tone equal temperament approximates [[11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[17-limit]], and is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.
| | Composers that used 72edo include [[Ivan Wyschnegradsky]], [[Julián Carrillo]] (who is better associated with [[96edo]]), [[Georg Friedrich Haas]], [[Ezra Sims]], [[Rick Tagawa]], [[James Tenney]], and the jazz musician [[Joe Maneri]]. |
|
| |
|
| 72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.
| | == Theory == |
| | 72edo approximates [[11-limit]] [[just intonation]] exceptionally well. It is [[consistent]] in the [[17-odd-limit]] and is the ninth [[zeta integral edo]]. It is the second edo (after [[58edo|58]]) to be [[consistency|distinctly consistent]] in the [[11-odd-limit]], the first edo to be [[consistency|consistent to distance 2]] in the 11-odd-limit, and the first edo to be consistent in the 12- and 13-[[odd prime sum limit|odd-prime-sum-limit]]. |
|
| |
|
| =Harmonic Scale=
| | The octave, fifth and fourth are the same size as they would be in 12edo, 72, 42 and 30 steps respectively, but the classic major third ([[5/4]]) measures 23 steps, not 24, and other [[5-limit]] major intervals are one step flat of 12edo while minor ones are one step sharp. The septimal minor seventh ([[7/4]]) is 58 steps, while the undecimal semiaugmented fourth ([[11/8]]) is 33. |
| Mode 8 of the harmonic series -- [[overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).
| |
|
| |
|
| || Overtones in "Mode 8": || 8 || || 9 || || 10 || || 11 || || 12 || || 13 || || 14 || || 15 || || 16 ||
| | 72et is the only 11-limit regular temperament which treats harmonics 24 to 28 as being equidistant in pitch, splits [[25/24]] into two equal [[49/48]][[~]][[50/49]]'s, and splits [[28/27]] into two equal [[55/54]]~[[56/55]]'s. It is also an excellent tuning for [[miracle]] temperament, especially the 11-limit version, and the related rank-3 temperament [[prodigy]], and is a good tuning for other temperaments and scales, including [[wizard]], [[harry]], [[catakleismic]], [[compton]], [[unidec]] and [[tritikleismic]]. |
| || ...as JI Ratio from 1/1: || 1/1 || || 9/8 || || 5/4 || || 11/8 || || 3/2 || || 13/8 || || 7/4 || || 15/8 || || 2/1 ||
| |
| || ...in cents: || 0 || || 203.9 || || 386.3 || || 551.3 || || 702.0 || || 840.5 || || 968.8 || || 1088.3 || || 1200.0 ||
| |
| || Nearest degree of 72edo: || 0 || || 12 || || 23 || || 33 || || 42 || || 50 || || 58 || || 65 || || 72 ||
| |
| || ...in cents: || 0 || || 200.0 || || 383.3 || || 550.0 || || 700.0 || || 833.3 || || 966.7 || || 1083.3 || || 1200.0 ||
| |
| || Steps as Freq. Ratio: || || 9:8 || || 10:9 || || 11:10 || || 12:11 || || 13:12 || || 14:13 || || 15:14 || || 16:15 || ||
| |
| || ...in cents: || || 203.9 || || 182.4 || || 165.0 || || 150.6 || || 138.6 || || 128.3 || || 119.4 || || 111.7 || ||
| |
| || Nearest degree of 72edo: || || 12 || || 11 || || 10 || || 9 || || 8 || || 8 || || 7 || || 7 || ||
| |
| || ...in cents: || || 200.0 || || 183.3 || || 166.7 || || 150.0 || || 133.3 || || 133.3 || || 116.7 || || 116.7 || ||
| |
|
| |
|
| =Intervals=
| | The 13th harmonic (octave reduced) is so closely mapped on [[acoustic phi]] that 72edo could be treated as a 2.3.5.7.11.ϕ.17 temperament. |
| || degrees || cents value || approximate ratios (17-limit) ||
| |
| || 0 || 0 || 1/1 ||
| |
| || 1 || 16.667 || ||
| |
| || 2 || 33.333 || ||
| |
| || 3 || 50 || ||
| |
| || 4 || 66.667 || ||
| |
| || 5 || 83.333 || ||
| |
| || 6 || 100 || 17/16, 18/17 ||
| |
| || 7 || 116.667 || 16/15. 15/14 ||
| |
| || 8 || 133.333 || 13/12, 14/13 ||
| |
| || 9 || 150 || 12/11 ||
| |
| || 10 || 166.667 || 11/10 ||
| |
| || 11 || 183.333 || 10/9 ||
| |
| || 12 || 200 || 9/8 ||
| |
| || 13 || 216.667 || 17/15 ||
| |
| || 14 || 233.333 || 8/7 ||
| |
| || 15 || 250 || 15/13 ||
| |
| || 16 || 266.667 || 7/6 ||
| |
| || 17 || 283.333 || 13/11 ||
| |
| || 18 || 300 || ||
| |
| || 19 || 316.667 || 6/5 ||
| |
| || 20 || 333.333 || 17/14 ||
| |
| || 21 || 350 || 11/9 ||
| |
| || 22 || 366.667 || ||
| |
| || 23 || 383.333 || 5/4 ||
| |
| || 24 || 400 || ||
| |
| || 25 || 416.667 || 14/11 ||
| |
| || 26 || 433.333 || 9/7 ||
| |
| || 27 || 450 || 13/10, 22/17 ||
| |
| || 28 || 466.667 || 17/13 ||
| |
| || 29 || 483.333 || ||
| |
| || 30 || 500 || 4/3 ||
| |
| || 31 || 516.667 || ||
| |
| || 32 || 533.333 || 15/11 ||
| |
| || 33 || 550 || 11/8 ||
| |
| || 34 || 566.667 || 18/13 ||
| |
| || 35 || 583.333 || 7/5 ||
| |
| || 36 || 600 || 17/12, 24/17 ||
| |
| || 37 || 616.667 || 10/7 ||
| |
| || 38 || 633.333 || 13/9 ||
| |
| || 39 || 650 || 16/11 ||
| |
| || 40 || 666.667 || 22/15 ||
| |
| || 41 || 683.333 || ||
| |
| || 42 || 700 || 3/2 ||
| |
| || 43 || 716.667 || ||
| |
| || 44 || 733.333 || 26/17 ||
| |
| || 45 || 750 || 20/13, 17/11 ||
| |
| || 46 || 766.667 || 14/9 ||
| |
| || 47 || 783.333 || 11/7 ||
| |
| || 48 || 800 || ||
| |
| || 49 || 816.667 || 8/5 ||
| |
| || 50 || 833.333 || ||
| |
| || 51 || 850 || 18/11 ||
| |
| || 52 || 866.667 || 28/17 ||
| |
| || 53 || 883.333 || 5/3 ||
| |
| || 54 || 900 || ||
| |
| || 55 || 916.667 || 22/13 ||
| |
| || 56 || 933.333 || 12/7 ||
| |
| || 57 || 950 || 26/15 ||
| |
| || 58 || 966.667 || 7/4 ||
| |
| || 59 || 983.333 || 30/17 ||
| |
| || 60 || 1000 || 16/9 ||
| |
| || 61 || 1016.667 || 9/5 ||
| |
| || 62 || 1033.333 || 20/11 ||
| |
| || 63 || 1050 || 11/6 ||
| |
| || 64 || 1066.667 || 24/13, 13/7 ||
| |
| || 65 || 1083.333 || 15/8, 28/15 ||
| |
| || 66 || 1100 || 32/17, 17/9 ||
| |
| || 67 || 1116.667 || ||
| |
| || 68 || 1133.333 || ||
| |
| || 69 || 1150 || ||
| |
| || 70 || 1166.667 || ||
| |
| || 71 || 1183.333 || ||
| |
| || 72 || 1200 || 2/1 ||
| |
| = =
| |
| =Linear temperaments=
| |
| ||~ Periods per octave ||~ Generator ||~ Names ||
| |
| || 1 || 1\72 || [[quincy]] ||
| |
| || 1 || 5\72 || ||
| |
| || 1 || 7\72 || [[miracle]]/benediction/manna ||
| |
| || 1 || 11\72 || ||
| |
| || 1 || 13\72 || ||
| |
| || 1 || 17\72 || [[neominor]] ||
| |
| || 1 || 19\72 || [[catakleismic]] ||
| |
| || 1 || 23\72 || ||
| |
| || 1 || 25\72 || [[sqrtphi]] ||
| |
| || 1 || 29\72 || ||
| |
| || 1 || 31\72 || [[marvo]]/zarvo ||
| |
| || 1 || 35\72 || [[cotritone]] ||
| |
| || 2 || 1\72 || ||
| |
| || 2 || 5\72 || [[harry]] ||
| |
| || 2 || 7\72 || ||
| |
| || 2 || 11\72 || [[unidec]]/hendec ||
| |
| || 2 || 13\72 || [[wizard]]/lizard/gizzard ||
| |
| || 2 || 17\72 || ||
| |
| || 3 || 1\72 || ||
| |
| || 3 || 5\72 || [[tritikleismic]] ||
| |
| || 3 || 7\72 || ||
| |
| || 3 || 11\72 || [[mirkat]] ||
| |
| || 4 || 1\72 || [[quadritikleismic]] ||
| |
| || 4 || 5\72 || ||
| |
| || 4 || 7\72 || ||
| |
| || 6 || 1\72 || ||
| |
| || 6 || 5\72 || ||
| |
| || 8 || 1\72 || [[octoid]] ||
| |
| || 8 || 2\72 || [[octowerck]] ||
| |
| || 8 || 4\72 || ||
| |
| || 9 || 1\72 || ||
| |
| || 9 || 3\72 || [[ennealimmal]]/ennealimmic ||
| |
| || 12 || 1\72 || [[compton]] ||
| |
| || 18 || 1\72 || [[hemiennealimmal]] ||
| |
| || 24 || 1\72 || [[hours]] ||
| |
| || 36 || 1\72 || ||
| |
|
| |
|
| =Z function=
| | 72edo is the smallest multiple of 12edo that (just barely) has another diatonic fifth, 43\72, an extremely hard diatonic fifth suitable for a 5edo [[circulating temperament]]. |
| 72edo is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. | |
|
| |
|
| [[image:plot72.png]]
| | === Prime harmonics === |
| | {{Harmonics in equal|72|columns=9}} |
| | {{Harmonics in equal|72|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 72edo (continued)}} |
|
| |
|
| =Music= | | === Octave stretch === |
| [[http://www.archive.org/details/Kotekant|Kotekant]] [[http://www.archive.org/download/Kotekant/kotekant.mp3|play]] by [[Gene Ward Smith]] | | 72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly [[stretched and compressed tuning|stretching the octave]], using tunings such as [[114edt]] or [[186ed6]]. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies. |
|
| |
|
| =Scales= | | === Subsets and supersets === |
| [[smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]]
| | Since 72 factors into primes as {{nowrap| 2<sup>3</sup> × 3<sup>2</sup> }}, 72edo has subset edos {{EDOs| 2, 3, 4, 6, 8, 9, 12, 18, 24, and 36 }}. [[144edo]], which doubles it, provides a possible correction to its approximate harmonic 13. |
| [[genus24255et72|Euler(24255) genus in 72 equal]]
| |
|
| |
|
| =External links= | | == Intervals == |
| * [[http://en.wikipedia.org/wiki/72_tone_equal_temperament|Wikipedia article on 72edo]]
| | {| class="wikitable center-all right-2 left-3" |
| * [[http://orthodoxwiki.org/Byzantine_Chant|OrthodoxWiki Article on Byzantine chant, which uses 72edo]]
| | |- |
| * [[http://en.wikipedia.org/wiki/Joe_Maneri|Wikipedia article on Joe Maneri (1927-2009)]]
| | ! # |
| * [[http://www.ekmelic-music.org/en/index.htmmusik/|Ekmelic Music Society/Gesellschaft für Ekmelische Musik]], a group of composers and researchers dedicated to 72edo music
| | ! Cents |
| * [[http://sonic-arts.org/tagawa/72edo.htm|Rick Tagawa's 72edo site]], including theory and composers' list
| | ! Approximate ratios<ref group="note">{{sg|limit=19-limit}} For lower limits see [[Table of 72edo intervals]].</ref> |
| * [[http://soundcloud.com/dawiertx|Danny Wier, composer and musician who specializes in 72-edo]]</pre></div>
| | ! colspan="3" | [[Ups and downs notation]] |
| <h4>Original HTML content:</h4> | | ! colspan="3" | [[SKULO interval names|SKULO interval names and notation]] |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>72edo</title></head><body><!-- ws:start:WikiTextTocRule:16:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --><a href="#Harmonic Scale">Harmonic Scale</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#toc2"> </a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Linear temperaments">Linear temperaments</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#Z function">Z function</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Scales">Scales</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --> | <a href="#External links">External links</a><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | | ! (K, S, U) |
| <!-- ws:end:WikiTextTocRule:25 --><hr />
| | |- |
| 72-tone equal temperament (or 72-edo) divides the octave into 72 steps or <em>moria</em>. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of <a class="wiki_link" href="/24edo">24-tone equal temperament</a>, a common and standard tuning of <a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian">Arabic</a> music, and has itself been used to tune Turkish music.<br />
| | | 0 |
| <br />
| | | 0.0 |
| Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with <a class="wiki_link" href="/96edo">96-edo</a>), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.<br />
| | | 1/1 |
| <br />
| | | P1 |
| 72-tone equal temperament approximates <a class="wiki_link" href="/11-limit">11-limit just intonation</a> exceptionally well, is consistent in the <a class="wiki_link" href="/17-limit">17-limit</a>, and is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">Zeta integral tuning</a>. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.<br />
| | | perfect unison |
| <br />
| | | D |
| 72 is an excellent tuning for <a class="wiki_link" href="/Gamelismic%20clan">miracle temperament</a>, especially the 11-limit version, and the related rank three temperament <a class="wiki_link" href="/Marvel%20family#Prodigy">prodigy</a>, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.<br />
| | | P1 |
| <br />
| | | perfect unison |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Harmonic Scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->Harmonic Scale</h1>
| | | D |
| Mode 8 of the harmonic series -- <a class="wiki_link" href="/overtone%20scales">overtones 8 through 16</a>, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).<br />
| | | D |
| <br />
| | |- |
| | | 1 |
| | | 16.7 |
| | | 81/80, 91/90, 99/98, 100/99, 105/104 |
| | | ^1 |
| | | up unison |
| | | ^D |
| | | K1, L1 |
| | | comma-wide unison, large unison |
| | | KD, LD |
| | | KD |
| | |- |
| | | 2 |
| | | 33.3 |
| | | 45/44, 49/48, 50/49, 55/54, 64/63 |
| | | ^^ |
| | | dup unison |
| | | ^^D |
| | | S1, O1 |
| | | super unison, on unison |
| | | SD, OD |
| | | SD |
| | |- |
| | | 3 |
| | | 50.0 |
| | | 33/32, 36/35, 40/39 |
| | | ^<sup>3</sup>1, v<sup>3</sup>m2 |
| | | trup unison, trudminor 2nd |
| | | ^<sup>3</sup>D, v<sup>3</sup>Eb |
| | | U1, H1, hm2 |
| | | uber unison, hyper unison, hypominor 2nd |
| | | UD, HD, uEb |
| | | UD, uEb |
| | |- |
| | | 4 |
| | | 66.7 |
| | | 25/24, 26/25, 27/26, 28/27 |
| | | vvm2 |
| | | dudminor 2nd |
| | | vvEb |
| | | kkA1, sm2 |
| | | classic aug unison, subminor 2nd |
| | | kkD#, sEb |
| | | sD#, (kkD#), sEb |
| | |- |
| | | 5 |
| | | 83.3 |
| | | 20/19, 21/20, 22/21 |
| | | vm2 |
| | | downminor 2nd |
| | | vEb |
| | | kA1, lm2 |
| | | comma-narrow aug unison, little minor 2nd |
| | | kD#, lEb |
| | | kD#, kEb |
| | |- |
| | | 6 |
| | | 100.0 |
| | | 17/16, 18/17, 19/18 |
| | | m2 |
| | | minor 2nd |
| | | Eb |
| | | m2 |
| | | minor 2nd |
| | | Eb |
| | | Eb |
| | |- |
| | | 7 |
| | | 116.7 |
| | | 15/14, 16/15 |
| | | ^m2 |
| | | upminor 2nd |
| | | ^Eb |
| | | Km2 |
| | | classic minor 2nd |
| | | KEb |
| | | KEb |
| | |- |
| | | 8 |
| | | 133.3 |
| | | 13/12, 14/13, 27/25 |
| | | ^^m2, v~2 |
| | | dupminor 2nd, downmid 2nd |
| | | ^^Eb |
| | | Om2 |
| | | on minor 2nd |
| | | OEb |
| | | SEb |
| | |- |
| | | 9 |
| | | 150.0 |
| | | 12/11 |
| | | ~2 |
| | | mid 2nd |
| | | v<sup>3</sup>E |
| | | N2 |
| | | neutral 2nd |
| | | UEb/uE |
| | | UEb/uE |
| | |- |
| | | 10 |
| | | 166.7 |
| | | 11/10 |
| | | ^~2, vvM2 |
| | | upmid 2nd, dudmajor 2nd |
| | | vvE |
| | | oM2 |
| | | off major 2nd |
| | | oE |
| | | sE |
| | |- |
| | | 11 |
| | | 183.3 |
| | | 10/9 |
| | | vM2 |
| | | downmajor 2nd |
| | | vE |
| | | kM2 |
| | | classic/comma-narrow major 2nd |
| | | kE |
| | | kE |
| | |- |
| | | 12 |
| | | 200.0 |
| | | 9/8 |
| | | M2 |
| | | major 2nd |
| | | E |
| | | M2 |
| | | major 2nd |
| | | E |
| | | E |
| | |- |
| | | 13 |
| | | 216.7 |
| | | 17/15, 25/22 |
| | | ^M2 |
| | | upmajor 2nd |
| | | ^E |
| | | LM2 |
| | | large major 2nd |
| | | LE |
| | | KE |
| | |- |
| | | 14 |
| | | 233.3 |
| | | 8/7 |
| | | ^^M2 |
| | | dupmajor 2nd |
| | | ^^E |
| | | SM2 |
| | | supermajor 2nd |
| | | SE |
| | | SE |
| | |- |
| | | 15 |
| | | 250.0 |
| | | 15/13, 22/19 |
| | | ^<sup>3</sup>M2, <br>v<sup>3</sup>m3 |
| | | trupmajor 2nd,<br>trudminor 3rd |
| | | ^<sup>3</sup>E, <br>v<sup>3</sup>F |
| | | HM2, hm3 |
| | | hypermajor 2nd, hypominor 3rd |
| | | HE, hF |
| | | UE, uF |
| | |- |
| | | 16 |
| | | 266.7 |
| | | 7/6 |
| | | vvm3 |
| | | dudminor 3rd |
| | | vvF |
| | | sm3 |
| | | subminor 3rd |
| | | sF |
| | | sF |
| | |- |
| | | 17 |
| | | 283.3 |
| | | 13/11, 20/17 |
| | | vm3 |
| | | downminor 3rd |
| | | vF |
| | | lm3 |
| | | little minor 3rd |
| | | lF |
| | | kF |
| | |- |
| | | 18 |
| | | 300.0 |
| | | 19/16, 25/21, 32/27 |
| | | m3 |
| | | minor 3rd |
| | | F |
| | | m3 |
| | | minor 3rd |
| | | F |
| | | F |
| | |- |
| | | 19 |
| | | 316.7 |
| | | 6/5 |
| | | ^m3 |
| | | upminor 3rd |
| | | ^F |
| | | Km3 |
| | | classic minor 3rd |
| | | KF |
| | | KF |
| | |- |
| | | 20 |
| | | 333.3 |
| | | 17/14, 39/32, 40/33 |
| | | ^^m3, v~3 |
| | | dupminor 3rd, downmid 3rd |
| | | ^^F |
| | | Om3 |
| | | on minor third |
| | | OF |
| | | SF |
| | |- |
| | | 21 |
| | | 350.0 |
| | | 11/9, 27/22 |
| | | ~3 |
| | | mid 3rd |
| | | ^<sup>3</sup>F |
| | | N3 |
| | | neutral 3rd |
| | | UF/uF# |
| | | UF/uF# |
| | |- |
| | | 22 |
| | | 366.7 |
| | | 16/13, 21/17, 26/21 |
| | | ^~3, vvM3 |
| | | upmid 3rd, dudmajor 3rd |
| | | vvF# |
| | | oM3 |
| | | off major 3rd |
| | | oF# |
| | | sF# |
| | |- |
| | | 23 |
| | | 383.3 |
| | | 5/4 |
| | | vM3 |
| | | downmajor 3rd |
| | | vF# |
| | | kM3 |
| | | classic major 3rd |
| | | kF# |
| | | kF# |
| | |- |
| | | 24 |
| | | 400.0 |
| | | 24/19 |
| | | M3 |
| | | major 3rd |
| | | F# |
| | | M3 |
| | | major 3rd |
| | | F# |
| | | F# |
| | |- |
| | | 25 |
| | | 416.7 |
| | | 14/11 |
| | | ^M3 |
| | | upmajor 3rd |
| | | ^F# |
| | | LM3 |
| | | large major 3rd |
| | | LF# |
| | | KF# |
| | |- |
| | | 26 |
| | | 433.3 |
| | | 9/7 |
| | | ^^M3 |
| | | dupmajor 3rd |
| | | ^^F# |
| | | SM3 |
| | | supermajor 3rd |
| | | SF# |
| | | SF# |
| | |- |
| | | 27 |
| | | 450.0 |
| | | 13/10, 22/17 |
| | | ^<sup>3</sup>M3, v<sup>3</sup>4 |
| | | trupmajor 3rd, trud 4th |
| | | ^<sup>3</sup>F#, v<sup>3</sup>G |
| | | HM3, h4 |
| | | hypermajor 3rd, hypo 4th |
| | | HF#, hG |
| | | UF#, uG |
| | |- |
| | | 28 |
| | | 466.7 |
| | | 17/13, 21/16 |
| | | vv4 |
| | | dud 4th |
| | | vvG |
| | | s4 |
| | | sub 4th |
| | | sG |
| | | sG |
| | |- |
| | | 29 |
| | | 483.3 |
| | | 33/25 |
| | | v4 |
| | | down 4th |
| | | vG |
| | | l4 |
| | | little 4th |
| | | lG |
| | | kG |
| | |- |
| | | 30 |
| | | 500.0 |
| | | 4/3 |
| | | P4 |
| | | perfect 4th |
| | | G |
| | | P4 |
| | | perfect 4th |
| | | G |
| | | G |
| | |- |
| | | 31 |
| | | 516.7 |
| | | 27/20 |
| | | ^4 |
| | | up 4th |
| | | ^G |
| | | K4 |
| | | comma-wide 4th |
| | | KG |
| | | KG |
| | |- |
| | | 32 |
| | | 533.3 |
| | | 15/11, 19/14, ''26/19'' |
| | | ^^4, v~4 |
| | | dup 4th, downmid 4th |
| | | ^^G |
| | | O4 |
| | | on 4th |
| | | OG |
| | | SG |
| | |- |
| | | 33 |
| | | 550.0 |
| | | 11/8 |
| | | ~4 |
| | | mid 4th |
| | | ^<sup>3</sup>G |
| | | U4/N4 |
| | | uber 4th / neutral 4th |
| | | UG |
| | | UG |
| | |- |
| | | 34 |
| | | 566.7 |
| | | 18/13, 25/18 |
| | | ^~4, vvA4 |
| | | upmid 4th, dudaug 4th |
| | | vvG# |
| | | kkA4, sd5 |
| | | classic aug 4th, sub dim 5th |
| | | kkG#, sAb |
| | | SG#, (kkG#), sAb |
| | |- |
| | | 35 |
| | | 583.3 |
| | | 7/5 |
| | | vA4, vd5 |
| | | downaug 4th, <br>downdim 5th |
| | | vG#, vAb |
| | | kA4, ld5 |
| | | comma-narrow aug 4th, little dim 5th |
| | | kG#, lAb |
| | | kG#, kAb |
| | |- |
| | | 36 |
| | | 600.0 |
| | | 17/12, 24/17 |
| | | A4, d5 |
| | | aug 4th, dim 5th |
| | | G#, Ab |
| | | A4, d5 |
| | | aug 4th, dim 5th |
| | | G#, Ab |
| | | G#, Ab |
| | |- |
| | | 37 |
| | | 616.7 |
| | | 10/7 |
| | | ^A4, ^d5 |
| | | upaug 4th, updim 5th |
| | | ^G#, ^Ab |
| | | LA4, Kd5 |
| | | large aug 4th, comma-wide dim 5th |
| | | LG#, KAb |
| | | KG#, KAb |
| | |- |
| | | 38 |
| | | 633.3 |
| | | 13/9, 36/25 |
| | | v~5, ^^d5 |
| | | downmid 5th, <br>dupdim 5th |
| | | ^^Ab |
| | | SA4, KKd5 |
| | | super aug 4th, classic dim 5th |
| | | SG#, KKAb |
| | | SG#, SAb, (KKAb) |
| | |- |
| | | 39 |
| | | 650.0 |
| | | 16/11 |
| | | ~5 |
| | | mid 5th |
| | | v<sup>3</sup>A |
| | | u5/N5 |
| | | unter 5th / neutral 5th |
| | | uA |
| | | uA |
| | |- |
| | | 40 |
| | | 666.7 |
| | | ''19/13'', 22/15, 28/19 |
| | | vv5, ^~5 |
| | | dud 5th, upmid 5th |
| | | vvA |
| | | o5 |
| | | off 5th |
| | | oA |
| | | sA |
| | |- |
| | | 41 |
| | | 683.3 |
| | | 40/27 |
| | | v5 |
| | | down 5th |
| | | vA |
| | | k5 |
| | | comma-narrow 5th |
| | | kA |
| | | kA |
| | |- |
| | | 42 |
| | | 700.0 |
| | | 3/2 |
| | | P5 |
| | | perfect 5th |
| | | A |
| | | P5 |
| | | perfect 5th |
| | | A |
| | | A |
| | |- |
| | | 43 |
| | | 716.7 |
| | | 50/33 |
| | | ^5 |
| | | up 5th |
| | | ^A |
| | | L5 |
| | | large fifth |
| | | LA |
| | | KA |
| | |- |
| | | 44 |
| | | 733.3 |
| | | 26/17, 32/21 |
| | | ^^5 |
| | | dup 5th |
| | | ^^A |
| | | S5 |
| | | super fifth |
| | | SA |
| | | SA |
| | |- |
| | | 45 |
| | | 750.0 |
| | | 17/11, 20/13 |
| | | ^<sup>3</sup>5, v<sup>3</sup>m6 |
| | | trup 5th, trudminor 6th |
| | | ^<sup>3</sup>A, v<sup>3</sup>Bb |
| | | H5, hm6 |
| | | hyper fifth, hypominor 6th |
| | | HA, hBb |
| | | UA, uBb |
| | |- |
| | | 46 |
| | | 766.7 |
| | | 14/9 |
| | | vvm6 |
| | | dudminor 6th |
| | | vvBb |
| | | sm6 |
| | | superminor 6th |
| | | sBb |
| | | sBb |
| | |- |
| | | 47 |
| | | 783.3 |
| | | 11/7 |
| | | vm6 |
| | | downminor 6th |
| | | vBb |
| | | lm6 |
| | | little minor 6th |
| | | lBb |
| | | kBb |
| | |- |
| | | 48 |
| | | 800.0 |
| | | 19/12 |
| | | m6 |
| | | minor 6th |
| | | Bb |
| | | m6 |
| | | minor 6th |
| | | Bb |
| | | Bb |
| | |- |
| | | 49 |
| | | 816.7 |
| | | 8/5 |
| | | ^m6 |
| | | upminor 6th |
| | | ^Bb |
| | | Km6 |
| | | classic minor 6th |
| | | kBb |
| | | kBb |
| | |- |
| | | 50 |
| | | 833.3 |
| | | 13/8, 21/13, 34/21 |
| | | ^^m6, v~6 |
| | | dupminor 6th, downmid 6th |
| | | ^^Bb |
| | | Om6 |
| | | on minor 6th |
| | | oBb |
| | | sBb |
| | |- |
| | | 51 |
| | | 850.0 |
| | | 18/11, 44/27 |
| | | ~6 |
| | | mid 6th |
| | | v<sup>3</sup>B |
| | | N6 |
| | | neutral 6th |
| | | UBb, uB |
| | | UBb, uB |
| | |- |
| | | 52 |
| | | 866.7 |
| | | 28/17, 33/20, 64/39 |
| | | ^~6, vvM6 |
| | | upmid 6th, dudmajor 6th |
| | | vvB |
| | | oM6 |
| | | off major 6th |
| | | oB |
| | | sB |
| | |- |
| | | 53 |
| | | 883.3 |
| | | 5/3 |
| | | vM6 |
| | | downmajor 6th |
| | | vB |
| | | kM6 |
| | | classic major 6th |
| | | kB |
| | | kB |
| | |- |
| | | 54 |
| | | 900.0 |
| | | 27/16, 32/19, 42/25 |
| | | M6 |
| | | major 6th |
| | | B |
| | | M6 |
| | | major 6th |
| | | B |
| | | B |
| | |- |
| | | 55 |
| | | 916.7 |
| | | 17/10, 22/13 |
| | | ^M6 |
| | | upmajor 6th |
| | | ^B |
| | | LM6 |
| | | large major 6th |
| | | LB |
| | | KB |
| | |- |
| | | 56 |
| | | 933.3 |
| | | 12/7 |
| | | ^^M6 |
| | | dupmajor 6th |
| | | ^^B |
| | | SM6 |
| | | supermajor 6th |
| | | SB |
| | | SB |
| | |- |
| | | 57 |
| | | 950.0 |
| | | 19/11, 26/15 |
| | | ^<sup>3</sup>M6, <br>v<sup>3</sup>m7 |
| | | trupmajor 6th,<br>trudminor 7th |
| | | ^<sup>3</sup>B, <br>v<sup>3</sup>C |
| | | HM6, hm7 |
| | | hypermajor 6th, hypominor 7th |
| | | HB, hC |
| | | UB, uC |
| | |- |
| | | 58 |
| | | 966.7 |
| | | 7/4 |
| | | vvm7 |
| | | dudminor 7th |
| | | vvC |
| | | sm7 |
| | | subminor 7th |
| | | sC |
| | | sC |
| | |- |
| | | 59 |
| | | 983.3 |
| | | 30/17, 44/25 |
| | | vm7 |
| | | downminor 7th |
| | | vC |
| | | lm7 |
| | | little minor 7th |
| | | lC |
| | | kC |
| | |- |
| | | 60 |
| | | 1000.0 |
| | | 16/9 |
| | | m7 |
| | | minor 7th |
| | | C |
| | | m7 |
| | | minor 7th |
| | | C |
| | | C |
| | |- |
| | | 61 |
| | | 1016.7 |
| | | 9/5 |
| | | ^m7 |
| | | upminor 7th |
| | | ^C |
| | | Km7 |
| | | classic/comma-wide minor 7th |
| | | KC |
| | | KC |
| | |- |
| | | 62 |
| | | 1033.3 |
| | | 20/11 |
| | | ^^m7, v~7 |
| | | dupminor 7th, downmid 7th |
| | | ^^C |
| | | Om7 |
| | | on minor 7th |
| | | OC |
| | | SC |
| | |- |
| | | 63 |
| | | 1050.0 |
| | | 11/6 |
| | | ~7 |
| | | mid 7th |
| | | ^<sup>3</sup>C |
| | | N7, hd8 |
| | | neutral 7th, hypo dim 8ve |
| | | UC/uC#, hDb |
| | | UC/uC#, uDb |
| | |- |
| | | 64 |
| | | 1066.7 |
| | | 13/7, 24/13, 50/27 |
| | | ^~7, vvM7 |
| | | upmid 7th, dudmajor 7th |
| | | vvC# |
| | | oM7, sd8 |
| | | off major 7th, sub dim 8ve |
| | | oC#, sDb |
| | | sC#, sDb |
| | |- |
| | | 65 |
| | | 1083.3 |
| | | 15/8, 28/15 |
| | | vM7 |
| | | downmajor 7th |
| | | vC# |
| | | kM7, ld8 |
| | | classic major 7th, little dim 8ve |
| | | kC#, lDb |
| | | kC#, kDb |
| | |- |
| | | 66 |
| | | 1100.0 |
| | | 17/9, 32/17, 36/19 |
| | | M7 |
| | | major 7th |
| | | C# |
| | | M7, d8 |
| | | major 7th, dim 8ve |
| | | C#, Db |
| | | C#, Db |
| | |- |
| | | 67 |
| | | 1116.7 |
| | | 19/10, 21/11, 40/21 |
| | | ^M7 |
| | | upmajor 7th |
| | | ^C# |
| | | LM7, Kd8 |
| | | large major 7th, comma-wide dim 8ve |
| | | LC#, KDb |
| | | KC#, KDb |
| | |- |
| | | 68 |
| | | 1133.3 |
| | | 25/13, 27/14, 48/25, 52/27 |
| | | ^^M7 |
| | | dupmajor 7th |
| | | ^^C# |
| | | SM7, KKd8 |
| | | supermajor 7th, classic dim 8ve |
| | | SC#, KKDb |
| | | SC#, SDb, (KKDb) |
| | |- |
| | | 69 |
| | | 1150.0 |
| | | 35/18, 39/20, 64/33 |
| | | ^<sup>3</sup>M7, v<sup>3</sup>8 |
| | | trupmajor 7th, trud octave |
| | | ^<sup>3</sup>C#, v<sup>3</sup>D |
| | | HM7, u8, h8 |
| | | hypermajor 7th, unter 8ve, hypo 8ve |
| | | HC#, uD, hD |
| | | UC#, uDb, uD |
| | |- |
| | | 70 |
| | | 1166.7 |
| | | 49/25, 55/28, 63/32, 88/45, 96/49 |
| | | vv8 |
| | | dud octave |
| | | vvD |
| | | s8, o8 |
| | | sub 8ve, off 8ve |
| | | sD, oD |
| | | sD |
| | |- |
| | | 71 |
| | | 1183.3 |
| | | 99/50, 160/81, 180/91, 196/99, 208/105 |
| | | v8 |
| | | down octave |
| | | vD |
| | | k8, l8 |
| | | comma-narrow 8ve, little 8ve |
| | | kD, lD |
| | | kD |
| | |- |
| | | 72 |
| | | 1200.0 |
| | | 2/1 |
| | | P8 |
| | | perfect octave |
| | | D |
| | | P8 |
| | | perfect octave |
| | | D |
| | | D |
| | |} |
| | <references group="note" /> |
|
| |
|
| | === Interval quality and chord names in color notation === |
| | Combining ups and downs notation with [[color notation]], qualities can be loosely associated with colors: |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable center-all" |
| <tr>
| | |- |
| <td>Overtones in &quot;Mode 8&quot;:<br />
| | ! Quality |
| </td>
| | ! [[Color notation|Color]] |
| <td>8<br />
| | ! Monzo format |
| </td>
| | ! Examples |
| <td><br />
| | |- |
| </td>
| | | dudminor |
| <td>9<br />
| | | zo |
| </td>
| | | (a b 0 1) |
| <td><br />
| | | 7/6, 7/4 |
| </td>
| | |- |
| <td>10<br />
| | | minor |
| </td>
| | | fourthward wa |
| <td><br />
| | | (a b), b < -1 |
| </td>
| | | 32/27, 16/9 |
| <td>11<br />
| | |- |
| </td>
| | | upminor |
| <td><br />
| | | gu |
| </td>
| | | (a b -1) |
| <td>12<br />
| | | 6/5, 9/5 |
| </td>
| | |- |
| <td><br />
| | | rowspan="2" | dupminor, <br>downmid |
| </td>
| | | luyo |
| <td>13<br />
| | | (a b 1 0 -1) |
| </td>
| | | 15/11 |
| <td><br />
| | |- |
| </td>
| | | tho |
| <td>14<br />
| | | (a b 0 0 0 1) |
| </td>
| | | 13/8, 13/9 |
| <td><br />
| | |- |
| </td>
| | | rowspan="2" | mid |
| <td>15<br />
| | | ilo |
| </td>
| | | (a b 0 0 1) |
| <td><br />
| | | 11/9, 11/6 |
| </td>
| | |- |
| <td>16<br />
| | | lu |
| </td>
| | | (a b 0 0 -1) |
| </tr>
| | | 12/11, 18/11 |
| <tr>
| | |- |
| <td>...as JI Ratio from 1/1:<br />
| | | rowspan="2" | upmid, <br>dudmajor |
| </td>
| | | logu |
| <td>1/1<br />
| | | (a b -1 0 1) |
| </td>
| | | 11/10 |
| <td><br />
| | |- |
| </td>
| | | thu |
| <td>9/8<br />
| | | (a b 0 0 0 -1) |
| </td>
| | | 16/13, 18/13 |
| <td><br />
| | |- |
| </td>
| | | downmajor |
| <td>5/4<br />
| | | yo |
| </td>
| | | (a b 1) |
| <td><br />
| | | 5/4, 5/3 |
| </td>
| | |- |
| <td>11/8<br />
| | | major |
| </td>
| | | fifthward wa |
| <td><br />
| | | (a b), b > 1 |
| </td>
| | | 9/8, 27/16 |
| <td>3/2<br />
| | |- |
| </td>
| | | dupmajor |
| <td><br />
| | | ru |
| </td>
| | | (a b 0 -1) |
| <td>13/8<br />
| | | 9/7, 12/7 |
| </td>
| | |- |
| <td><br />
| | | rowspan="2" | trupmajor, <br>trudminor |
| </td>
| | | thogu |
| <td>7/4<br />
| | | (a b -1 0 0 1) |
| </td>
| | | 13/10 |
| <td><br />
| | |- |
| </td>
| | | thuyo |
| <td>15/8<br />
| | | (a b 1 0 0 -1) |
| </td>
| | | 15/13 |
| <td><br />
| | |} |
| </td>
| | All 72edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>...in cents:<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>203.9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>386.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>551.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>702.0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>840.5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>968.8<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1088.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200.0<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Nearest degree of 72edo:<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>33<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>42<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>50<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>58<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>65<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>72<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>...in cents:<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>200.0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>383.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>550.0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>700.0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>833.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>966.7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1083.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200.0<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Steps as Freq. Ratio:<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9:8<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10:9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11:10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12:11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13:12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>14:13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15:14<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16:15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>...in cents:<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>203.9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>182.4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>165.0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>150.6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>138.6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>128.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>119.4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>111.7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Nearest degree of 72edo:<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>...in cents:<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>200.0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>183.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>166.7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>150.0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>133.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>133.3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | {| class="wikitable center-all" |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h1>
| | |- |
|
| | ! [[Color notation|Color of the 3rd]] |
| | ! JI chord |
| | ! Notes as edosteps |
| | ! Notes of C chord |
| | ! Written name |
| | ! Spoken name |
| | |- |
| | | zo |
| | | 6:7:9 |
| | | 0-16-42 |
| | | C vvEb G |
| | | Cvvm |
| | | C dudminor |
| | |- |
| | | gu |
| | | 10:12:15 |
| | | 0-19-42 |
| | | C ^Eb G |
| | | C^m |
| | | C upminor |
| | |- |
| | | ilo |
| | | 18:22:27 |
| | | 0-21-42 |
| | | C v<span style="font-size: 90%; vertical-align: super;">3</span>E G |
| | | C~ |
| | | C mid |
| | |- |
| | | yo |
| | | 4:5:6 |
| | | 0-23-42 |
| | | C vE G |
| | | Cv |
| | | C downmajor or C down |
| | |- |
| | | ru |
| | | 14:18:27 |
| | | 0-26-42 |
| | | C ^^E G |
| | | C^^ |
| | | C dupmajor or C dup |
| | |} |
| | For a more complete list, see [[Ups and downs notation #Chord names in other EDOs]]. |
|
| |
|
| <table class="wiki_table">
| | === Relationship between primes and rings === |
| <tr>
| | In 72tet, there are 6 [[ring number|rings]]. 12edo is the plain ring; thus every 6 degrees is the 3-limit. |
| <td>degrees<br />
| |
| </td>
| |
| <td>cents value<br />
| |
| </td>
| |
| <td>approximate ratios (17-limit)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>16.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>33.333<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>50<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>66.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>83.333<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>100<br />
| |
| </td>
| |
| <td>17/16, 18/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>116.667<br />
| |
| </td>
| |
| <td>16/15. 15/14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>133.333<br />
| |
| </td>
| |
| <td>13/12, 14/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>150<br />
| |
| </td>
| |
| <td>12/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>166.667<br />
| |
| </td>
| |
| <td>11/10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>183.333<br />
| |
| </td>
| |
| <td>10/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>200<br />
| |
| </td>
| |
| <td>9/8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>216.667<br />
| |
| </td>
| |
| <td>17/15<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>233.333<br />
| |
| </td>
| |
| <td>8/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>250<br />
| |
| </td>
| |
| <td>15/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>266.667<br />
| |
| </td>
| |
| <td>7/6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>283.333<br />
| |
| </td>
| |
| <td>13/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>300<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>316.667<br />
| |
| </td>
| |
| <td>6/5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>333.333<br />
| |
| </td>
| |
| <td>17/14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>350<br />
| |
| </td>
| |
| <td>11/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>366.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>383.333<br />
| |
| </td>
| |
| <td>5/4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>400<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>416.667<br />
| |
| </td>
| |
| <td>14/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>433.333<br />
| |
| </td>
| |
| <td>9/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>450<br />
| |
| </td>
| |
| <td>13/10, 22/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>466.667<br />
| |
| </td>
| |
| <td>17/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>483.333<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>500<br />
| |
| </td>
| |
| <td>4/3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>516.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>533.333<br />
| |
| </td>
| |
| <td>15/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>550<br />
| |
| </td>
| |
| <td>11/8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>566.667<br />
| |
| </td>
| |
| <td>18/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>583.333<br />
| |
| </td>
| |
| <td>7/5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>600<br />
| |
| </td>
| |
| <td>17/12, 24/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>616.667<br />
| |
| </td>
| |
| <td>10/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>633.333<br />
| |
| </td>
| |
| <td>13/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>650<br />
| |
| </td>
| |
| <td>16/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>666.667<br />
| |
| </td>
| |
| <td>22/15<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>683.333<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>700<br />
| |
| </td>
| |
| <td>3/2<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>716.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>733.333<br />
| |
| </td>
| |
| <td>26/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>750<br />
| |
| </td>
| |
| <td>20/13, 17/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>766.667<br />
| |
| </td>
| |
| <td>14/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>783.333<br />
| |
| </td>
| |
| <td>11/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>800<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>816.667<br />
| |
| </td>
| |
| <td>8/5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>833.333<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>850<br />
| |
| </td>
| |
| <td>18/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>866.667<br />
| |
| </td>
| |
| <td>28/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>883.333<br />
| |
| </td>
| |
| <td>5/3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>900<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>916.667<br />
| |
| </td>
| |
| <td>22/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>933.333<br />
| |
| </td>
| |
| <td>12/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>950<br />
| |
| </td>
| |
| <td>26/15<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>966.667<br />
| |
| </td>
| |
| <td>7/4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>983.333<br />
| |
| </td>
| |
| <td>30/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>1000<br />
| |
| </td>
| |
| <td>16/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>1016.667<br />
| |
| </td>
| |
| <td>9/5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>1033.333<br />
| |
| </td>
| |
| <td>20/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>1050<br />
| |
| </td>
| |
| <td>11/6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>1066.667<br />
| |
| </td>
| |
| <td>24/13, 13/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>1083.333<br />
| |
| </td>
| |
| <td>15/8, 28/15<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>66<br />
| |
| </td>
| |
| <td>1100<br />
| |
| </td>
| |
| <td>32/17, 17/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>67<br />
| |
| </td>
| |
| <td>1116.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>68<br />
| |
| </td>
| |
| <td>1133.333<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>69<br />
| |
| </td>
| |
| <td>1150<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>70<br />
| |
| </td>
| |
| <td>1166.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>71<br />
| |
| </td>
| |
| <td>1183.333<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>72<br />
| |
| </td>
| |
| <td>1200<br />
| |
| </td>
| |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><!-- ws:end:WikiTextHeadingRule:4 --> </h1>
| | Then, after each subsequent degree in reverse, a new prime limit is unveiled from it: |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Linear temperaments"></a><!-- ws:end:WikiTextHeadingRule:6 -->Linear temperaments</h1> | | * −1 degree (the down ring) corrects 81/64 to 5/4 via 80/81 |
|
| | * −2 degrees (the dud ring) corrects 16/9 to 7/4 via 63/64 |
| | * +3 degrees (the trup ring) corrects 4/3 to 11/8 via 33/32 |
| | * +2 degrees (the dup ring) corrects 128/81 to 13/8 via 1053/1024 |
| | * 0 degrees (the plain ring) corrects 256/243 to 17/16 via 4131/4096 |
| | * 0 degrees (the plain ring) corrects 32/27 to 19/16 via 513/512 |
| | Thus the product of a ratio's monzo with {{map| 0 0 -1 -2 3 2 0 0 }}, modulo 6, specifies which ring the ratio lies on. |
|
| |
|
| <table class="wiki_table">
| | == Notations == |
| <tr>
| | === Ups and downs notation === |
| <th>Periods per octave<br />
| | 72edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. |
| </th>
| | {{Sharpness-sharp6a}} |
| <th>Generator<br />
| |
| </th>
| |
| <th>Names<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/quincy">quincy</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>5\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>7\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/miracle">miracle</a>/benediction/manna<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>11\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>13\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>17\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/neominor">neominor</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>19\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/catakleismic">catakleismic</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>23\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>25\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/sqrtphi">sqrtphi</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>29\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>31\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/marvo">marvo</a>/zarvo<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>35\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/cotritone">cotritone</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>5\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/harry">harry</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>7\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>11\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/unidec">unidec</a>/hendec<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>13\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/wizard">wizard</a>/lizard/gizzard<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>17\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>5\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/tritikleismic">tritikleismic</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>7\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>11\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/mirkat">mirkat</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/quadritikleismic">quadritikleismic</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>5\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>7\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>5\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/octoid">octoid</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>2\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/octowerck">octowerck</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>4\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>3\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/ennealimmal">ennealimmal</a>/ennealimmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/compton">compton</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/hemiennealimmal">hemiennealimmal</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/hours">hours</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>1\72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | Half-sharps and half-flats can be used to avoid triple arrows: |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Z function"></a><!-- ws:end:WikiTextHeadingRule:8 -->Z function</h1>
| | {{Sharpness-sharp6b}} |
| 72edo is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a>, as well as being a peak and gap edo, and the maximum value of the <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function">Z function</a> in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.<br />
| | |
| <br />
| | [[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]: |
| <!-- ws:start:WikiTextLocalImageRule:1277:&lt;img src=&quot;/file/view/plot72.png/219772696/plot72.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /><!-- ws:end:WikiTextLocalImageRule:1277 --><br />
| | {{Sharpness-sharp6}} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:10 -->Music</h1>
| | If double arrows are not desirable, arrows can be attached to quarter-tone accidentals: |
| <a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow">Kotekant</a> <a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br />
| | {{Sharpness-sharp6-qt}} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:12 -->Scales</h1>
| | === Sagittal notation === |
| <a class="wiki_link" href="/smithgw72a">smithgw72a</a>, <a class="wiki_link" href="/smithgw72b">smithgw72b</a>, <a class="wiki_link" href="/smithgw72c">smithgw72c</a>, <a class="wiki_link" href="/smithgw72d">smithgw72d</a>, <a class="wiki_link" href="/smithgw72e">smithgw72e</a>, <a class="wiki_link" href="/smithgw72f">smithgw72f</a>, <a class="wiki_link" href="/smithgw72g">smithgw72g</a>, <a class="wiki_link" href="/smithgw72h">smithgw72h</a>, <a class="wiki_link" href="/smithgw72i">smithgw72i</a>, <a class="wiki_link" href="/smithgw72j">smithgw72j</a><br />
| | This notation uses the same sagittal sequence as EDOs [[65edo#Sagittal notation|65-EDO]] and [[79edo#Sagittal notation|79]], and is a superset of the notations for EDOs [[36edo#Sagittal notation|36]], [[24edo#Sagittal notation|24]], [[18edo#Sagittal notation|18]], [[12edo#Sagittal notation|12]], [[8edo#Sagittal notation|8]], and [[6edo#Sagittal notation|6]]. |
| <a class="wiki_link" href="/genus24255et72">Euler(24255) genus in 72 equal</a><br />
| | |
| <br />
| | ==== Evo flavor ==== |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="External links"></a><!-- ws:end:WikiTextHeadingRule:14 -->External links</h1>
| | <imagemap> |
| <ul><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow">Wikipedia article on 72edo</a></li><li><a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow">OrthodoxWiki Article on Byzantine chant, which uses 72edo</a></li><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow">Wikipedia article on Joe Maneri (1927-2009)</a></li><li><a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow">Ekmelic Music Society/Gesellschaft für Ekmelische Musik</a>, a group of composers and researchers dedicated to 72edo music</li><li><a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow">Rick Tagawa's 72edo site</a>, including theory and composers' list</li><li><a class="wiki_link_ext" href="http://soundcloud.com/dawiertx" rel="nofollow">Danny Wier, composer and musician who specializes in 72-edo</a></li></ul></body></html></pre></div>
| | File:72-EDO_Evo_Sagittal.svg |
| | desc none |
| | rect 80 0 300 50 [[Sagittal_notation]] |
| | rect 300 0 719 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| | rect 20 80 120 106 [[81/80]] |
| | rect 120 80 220 106 [[64/63]] |
| | rect 220 80 340 106 [[33/32]] |
| | default [[File:72-EDO_Evo_Sagittal.svg]] |
| | </imagemap> |
| | |
| | ==== Revo flavor ==== |
| | <imagemap> |
| | File:72-EDO_Revo_Sagittal.svg |
| | desc none |
| | rect 80 0 300 50 [[Sagittal_notation]] |
| | rect 300 0 695 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| | rect 20 80 120 106 [[81/80]] |
| | rect 120 80 220 106 [[64/63]] |
| | rect 220 80 340 106 [[33/32]] |
| | default [[File:72-EDO_Revo_Sagittal.svg]] |
| | </imagemap> |
| | |
| | ==== Evo-SZ flavor ==== |
| | <imagemap> |
| | File:72-EDO_Evo-SZ_Sagittal.svg |
| | desc none |
| | rect 80 0 300 50 [[Sagittal_notation]] |
| | rect 300 0 711 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| | rect 20 80 120 106 [[81/80]] |
| | rect 120 80 220 106 [[64/63]] |
| | rect 220 80 340 106 [[33/32]] |
| | default [[File:72-EDO_Evo-SZ_Sagittal.svg]] |
| | </imagemap> |
| | |
| | From the appendix to [[The Sagittal Songbook]] by [[Jacob Barton|Jacob A. Barton]], a diagram of how to notate 72edo in the Revo flavor of Sagittal: |
| | |
| | [[File:72edo Sagittal.png|800px]] |
| | |
| | === Ivan Wyschnegradsky's notation === |
| | {{Sharpness-sharp6-iw|72}} |
| | |
| | == Approximation to JI == |
| | [[File:72ed2.svg|250px|thumb|right|none|alt=alt : Your browser has no SVG support.|Selected intervals approximated in 72edo]] |
| | |
| | === Interval mappings === |
| | {{Q-odd-limit intervals|72}} |
| | |
| | === Zeta properties === |
| | 72edo is the ninth [[zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[the Riemann zeta function and tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. |
| | |
| | [[File:plot72.png|alt=plot72.png|plot72.png]] |
| | |
| | == Regular temperament properties == |
| | {| class="wikitable center-4 center-5 center-6" |
| | |- |
| | ! rowspan="2" | [[Subgroup]] |
| | ! rowspan="2" | [[Comma list]] |
| | ! rowspan="2" | [[Mapping]] |
| | ! rowspan="2" | Optimal<br>8ve stretch (¢) |
| | ! colspan="2" | Tuning error |
| | |- |
| | ! [[TE error|Absolute]] (¢) |
| | ! [[TE simple badness|Relative]] (%) |
| | |- |
| | | 2.3.5 |
| | | 15625/15552, 531441/524288 |
| | | {{Mapping| 72 114 167 }} |
| | | +0.839 |
| | | 0.594 |
| | | 3.56 |
| | |- |
| | | 2.3.5.7 |
| | | 225/224, 1029/1024, 4375/4374 |
| | | {{Mapping| 72 114 167 202 }} |
| | | +0.822 |
| | | 0.515 |
| | | 3.09 |
| | |- |
| | | 2.3.5.7.11 |
| | | 225/224, 243/242, 385/384, 4000/3993 |
| | | {{Mapping| 72 114 167 202 249 }} |
| | | +0.734 |
| | | 0.493 |
| | | 2.96 |
| | |- |
| | | 2.3.5.7.11.13 |
| | | 169/168, 225/224, 243/242, 325/324, 385/384 |
| | | {{Mapping| 72 114 167 202 249 266 }} |
| | | +0.936 |
| | | 0.638 |
| | | 3.82 |
| | |- |
| | | 2.3.5.7.11.13.17 |
| | | 169/168, 221/220, 225/224, 243/242, 273/272, 325/324 |
| | | {{Mapping| 72 114 167 202 249 266 294 }} |
| | | +0.975 |
| | | 0.599 |
| | | 3.59 |
| | |- |
| | | 2.3.5.7.11.13.17.19 |
| | | 153/152, 169/168, 210/209, 221/220, 225/224, 243/242, 273/272 |
| | | {{Mapping| 72 114 167 202 249 266 294 306 }} |
| | | +0.780 |
| | | 0.762 |
| | | 4.57 |
| | |} |
| | * 72et has lower relative errors than any previous equal temperaments in the 7-, 11-, 13-, 17-, and 19-limit. The next equal temperaments doing better in these subgroups are [[99edo|99]], [[270edo|270]], [[224edo|224]], [[494edo|494]], and [[217edo|217]], respectively. |
| | |
| | === Commas === |
| | Commas tempered out by 72edo include… |
| | |
| | {| class="commatable wikitable center-1 center-2 right-4" |
| | |- |
| | ! [[Harmonic limit|Prime<br>limit]] |
| | ! [[Ratio]]<ref group="note">{{rd}}</ref> |
| | ! [[Monzo]] |
| | ! [[Cents]] |
| | ! Name(s) |
| | |- |
| | | 3 |
| | | [[531441/524288|(12 digits)]] |
| | | {{Monzo| -19 12 }} |
| | | 23.46 |
| | | Pythagorean comma |
| | |- |
| | | 5 |
| | | [[15625/15552]] |
| | | {{Monzo| -6 -5 6 }} |
| | | 8.11 |
| | | Kleisma |
| | |- |
| | | 5 |
| | | [[34171875/33554432|(16 digits)]] |
| | | {{Monzo| -25 7 6 }} |
| | | 31.57 |
| | | [[Ampersand comma]] |
| | |- |
| | | 5 |
| | | [[129140163/128000000|(18 digits)]] |
| | | {{Monzo| -13 17 -6 }} |
| | | 15.35 |
| | | [[Graviton]] |
| | |- |
| | | 5 |
| | | <abbr title="7629394531250/7625597484987">(26 digits)</abbr> |
| | | {{Monzo| 1 -27 18 }} |
| | | 0.86 |
| | | [[Ennealimma]] |
| | |- |
| | | 7 |
| | | [[225/224]] |
| | | {{Monzo| -5 2 2 -1 }} |
| | | 7.71 |
| | | Marvel comma |
| | |- |
| | | 7 |
| | | [[1029/1024]] |
| | | {{Monzo| -10 1 0 3 }} |
| | | 8.43 |
| | | Gamelisma |
| | |- |
| | | 7 |
| | | [[2401/2400]] |
| | | {{Monzo| -5 -1 -2 4 }} |
| | | 0.72 |
| | | Breedsma |
| | |- |
| | | 7 |
| | | [[4375/4374]] |
| | | {{Monzo| -1 -7 4 1 }} |
| | | 0.40 |
| | | Ragisma |
| | |- |
| | | 7 |
| | | [[16875/16807]] |
| | | {{Monzo| 0 3 4 -5 }} |
| | | 6.99 |
| | | Mirkwai comma |
| | |- |
| | | 7 |
| | | [[19683/19600]] |
| | | {{Monzo| -4 9 -2 -2 }} |
| | | 7.32 |
| | | Cataharry comma |
| | |- |
| | | 7 |
| | | <abbr title="420175/419904">(12 digits)</abbr> |
| | | {{Monzo | -6 -8 2 5 }} |
| | | 1.12 |
| | | [[Wizma]] |
| | |- |
| | | 7 |
| | | <abbr title="250047/250000">(12 digits)</abbr> |
| | | {{Monzo| -4 6 -6 3 }} |
| | | 0.33 |
| | | [[Landscape comma]] |
| | |- |
| | | 11 |
| | | [[243/242]] |
| | | {{Monzo| -1 5 0 0 -2}} |
| | | 7.14 |
| | | Rastma |
| | |- |
| | | 11 |
| | | [[385/384]] |
| | | {{Monzo| -7 -1 1 1 1 }} |
| | | 4.50 |
| | | Keenanisma |
| | |- |
| | | 11 |
| | | [[441/440]] |
| | | {{Monzo| -3 2 -1 2 -1 }} |
| | | 3.93 |
| | | Werckisma |
| | |- |
| | | 11 |
| | | [[540/539]] |
| | | {{Monzo| 2 3 1 -2 -1 }} |
| | | 3.21 |
| | | Swetisma |
| | |- |
| | | 11 |
| | | [[1375/1372]] |
| | | {{Monzo| -2 0 3 -3 1 }} |
| | | 3.78 |
| | | Moctdel comma |
| | |- |
| | | 11 |
| | | [[3025/3024]] |
| | | {{Monzo| -4 -3 2 -1 2 }} |
| | | 0.57 |
| | | Lehmerisma |
| | |- |
| | | 11 |
| | | [[4000/3993]] |
| | | {{Monzo| 5 -1 3 0 -3 }} |
| | | 3.03 |
| | | Wizardharry comma |
| | |- |
| | | 11 |
| | | [[6250/6237]] |
| | | {{Monzo| 1 -4 5 -1 -1 }} |
| | | 3.60 |
| | | Liganellus comma |
| | |- |
| | | 11 |
| | | [[9801/9800]] |
| | | {{Monzo| -3 4 -2 -2 2 }} |
| | | 0.18 |
| | | Kalisma |
| | |- |
| | | 11 |
| | | <abbr title="1771561/1769472">(14 digits)</abbr> |
| | | {{Monzo| 16 -3 0 0 6 }} |
| | | 2.04 |
| | | [[Nexus comma]] |
| | |- |
| | | 13 |
| | | [[169/168]] |
| | | {{Monzo| -3 -1 0 -1 0 2 }} |
| | | 10.27 |
| | | Buzurgisma |
| | |- |
| | | 13 |
| | | [[325/324]] |
| | | {{Monzo| -2 -4 2 0 0 1 }} |
| | | 5.34 |
| | | Marveltwin comma |
| | |- |
| | | 13 |
| | | [[351/350]] |
| | | {{Monzo| -1 3 -2 -1 0 1 }} |
| | | 4.94 |
| | | Ratwolfsma |
| | |- |
| | | 13 |
| | | [[364/363]] |
| | | {{Monzo| 2 -1 0 1 -2 1 }} |
| | | 4.76 |
| | | Minor minthma |
| | |- |
| | | 13 |
| | | [[625/624]] |
| | | {{Monzo| -4 -1 4 0 0 -1 }} |
| | | 2.77 |
| | | Tunbarsma |
| | |- |
| | | 13 |
| | | [[676/675]] |
| | | {{Monzo| 2 -3 -2 0 0 2 }} |
| | | 2.56 |
| | | Island comma |
| | |- |
| | | 13 |
| | | [[729/728]] |
| | | {{Monzo| -3 6 0 -1 0 -1 }} |
| | | 2.38 |
| | | Squbema |
| | |- |
| | | 13 |
| | | [[1001/1000]] |
| | | {{Monzo| -3 0 -3 1 1 1 }} |
| | | 1.73 |
| | | Sinbadma |
| | |- |
| | | 13 |
| | | [[1575/1573]] |
| | | {{Monzo| 2 2 1 -2 -1 }} |
| | | 2.20 |
| | | Nicola |
| | |- |
| | | 13 |
| | | [[1716/1715]] |
| | | {{Monzo| 2 1 -1 -3 1 1 }} |
| | | 1.01 |
| | | Lummic comma |
| | |- |
| | | 13 |
| | | [[2080/2079]] |
| | | {{Monzo| 5 -3 1 -1 -1 1 }} |
| | | 0.83 |
| | | Ibnsinma |
| | |- |
| | | 13 |
| | | [[6656/6655]] |
| | | {{Monzo| 9 0 -1 0 -3 1 }} |
| | | 0.26012 |
| | | Jacobin comma |
| | |} |
| | <references group="note" /> |
| | |
| | === Rank-2 temperaments === |
| | * [[List of edo-distinct 72et rank two temperaments]] |
| | |
| | 72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit. |
| | |
| | {| class="wikitable center-all left-5" |
| | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator |
| | |- |
| | ! Periods<br>per 8ve |
| | ! Generator* |
| | ! Cents* |
| | ! Associated<br>ratio* |
| | ! Temperament |
| | |- |
| | | 1 |
| | | 1\72 |
| | | 16.7 |
| | | 105/104 |
| | | [[Quincy]] |
| | |- |
| | | 1 |
| | | 5\72 |
| | | 83.3 |
| | | 21/20 |
| | | [[Marvolo]] |
| | |- |
| | | 1 |
| | | 7\72 |
| | | 116.7 |
| | | 15/14 |
| | | [[Miracle]] / benediction / manna |
| | |- |
| | | 1 |
| | | 17\72 |
| | | 283.3 |
| | | 13/11 |
| | | [[Neominor]] |
| | |- |
| | | 1 |
| | | 19\72 |
| | | 316.7 |
| | | 6/5 |
| | | [[Catakleismic]] |
| | |- |
| | | 1 |
| | | 25\72 |
| | | 416.7 |
| | | 14/11 |
| | | [[Sqrtphi]] |
| | |- |
| | | 1 |
| | | 29\72 |
| | | 483.3 |
| | | 45/34 |
| | | [[Hemiseven]] |
| | |- |
| | | 1 |
| | | 31\72 |
| | | 516.7 |
| | | 27/20 |
| | | [[Marvo]] / [[zarvo]] |
| | |- |
| | | 1 |
| | | 35\72 |
| | | 583.3 |
| | | 7/5 |
| | | [[Cotritone]] |
| | |- |
| | | 2 |
| | | 5\72 |
| | | 83.3 |
| | | 21/20 |
| | | [[Harry]] |
| | |- |
| | | 2 |
| | | 7\72 |
| | | 116.7 |
| | | 15/14 |
| | | [[Semimiracle]] |
| | |- |
| | | 2 |
| | | 11\72 |
| | | 183.3 |
| | | 10/9 |
| | | [[Unidec]] / hendec |
| | |- |
| | | 2 |
| | | 21\72<br>(19\72) |
| | | 316.7<br>(283.3) |
| | | 6/5<br>(13/11) |
| | | [[Bikleismic]] |
| | |- |
| | | 2 |
| | | 23\72<br>(13\72) |
| | | 383.3<br>(216.7) |
| | | 5/4<br>(17/15) |
| | | [[Wizard]] / lizard / gizzard |
| | |- |
| | | 3 |
| | | 11\72 |
| | | 183.3 |
| | | 10/9 |
| | | [[Mirkat]] |
| | |- |
| | | 3 |
| | | 19\72<br>(5\72) |
| | | 316.7<br>(83.3) |
| | | 6/5<br>(21/20) |
| | | [[Tritikleismic]] |
| | |- |
| | | 4 |
| | | 19\72<br>(1\72) |
| | | 316.7<br>(16.7) |
| | | 6/5<br>(105/104) |
| | | [[Quadritikleismic]] |
| | |- |
| | | 8 |
| | | 34\72<br>(2\72) |
| | | 566.7<br>(33.3) |
| | | 168/121<br>(55/54) |
| | | [[Octowerck]] / octowerckis |
| | |- |
| | | 8 |
| | | 35\72<br>(1\72) |
| | | 583.3<br>(16.7) |
| | | 7/5<br>(100/99) |
| | | [[Octoid]] / octopus |
| | |- |
| | | 9 |
| | | 19\72<br>(3\72) |
| | | 316.7<br>(50.0) |
| | | 6/5<br>(36/35) |
| | | [[Ennealimmal]] / ennealimnic |
| | |- |
| | | 9 |
| | | 23\72<br>(1\72) |
| | | 383.3<br>(16.7) |
| | | 5/4<br>(105/104) |
| | | [[Enneaportent]] |
| | |- |
| | | 12 |
| | | 23\72<br>(1\72) |
| | | 383.3<br>(16.7) |
| | | 5/4<br>(100/99) |
| | | [[Compton]] / comptone |
| | |- |
| | | 18 |
| | | 19\72<br>(1\72) |
| | | 316.7<br>(16.7) |
| | | 6/5<br>(105/104) |
| | | [[Hemiennealimmal]] |
| | |- |
| | | 24 |
| | | 23\72<br>(1\72) |
| | | 383.3<br>(16.7) |
| | | 5/4<br>(105/104) |
| | | [[Hours]] |
| | |- |
| | | 36 |
| | | 23\72<br>(1\72) |
| | | 383.3<br>(16.7) |
| | | 5/4<br>(81/80) |
| | | [[Gamelstearn]] |
| | |} |
| | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct |
| | |
| | == Scales == |
| | * [[Smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]] |
| | * [[Blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]] |
| | * [[Keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]] |
| | * [[Genus24255et72|Euler(24255) genus in 72 equal]] |
| | * [[JuneGloom]] |
| | * [[Harry Partch's 43-tone scale]]: 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 |
| | * [[Magnetosphere scale|Magnetosphere]], [[Blackened skies]], [[Lost spirit]] |
| | * [[5- to 10-tone scales in 72edo]] |
| | |
| | === Harmonic scale === |
| | Mode 8 of the harmonic series—[[overtone scale|harmonics 8 through 16]], octave repeating—is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). |
| | |
| | {| class="wikitable" |
| | |- |
| | ! Harmonics in "Mode 8": |
| | | 8 |
| | | |
| | | 9 |
| | | |
| | | 10 |
| | | |
| | | 11 |
| | | |
| | | 12 |
| | | |
| | | 13 |
| | | |
| | | 14 |
| | | |
| | | 15 |
| | | |
| | | 16 |
| | |- |
| | ! …as JI Ratio from 1/1: |
| | | 1/1 |
| | | |
| | | 9/8 |
| | | |
| | | 5/4 |
| | | |
| | | 11/8 |
| | | |
| | | 3/2 |
| | | |
| | | 13/8 |
| | | |
| | | 7/4 |
| | | |
| | | 15/8 |
| | | |
| | | 2/1 |
| | |- |
| | ! …in cents: |
| | | 0 |
| | | |
| | | 203.9 |
| | | |
| | | 386.3 |
| | | |
| | | 551.3 |
| | | |
| | | 702.0 |
| | | |
| | | 840.5 |
| | | |
| | | 968.8 |
| | | |
| | | 1088.3 |
| | | |
| | | 1200.0 |
| | |- |
| | ! Nearest degree of 72edo: |
| | | 0 |
| | | |
| | | 12 |
| | | |
| | | 23 |
| | | |
| | | 33 |
| | | |
| | | 42 |
| | | |
| | | 50 |
| | | |
| | | 58 |
| | | |
| | | 65 |
| | | |
| | | 72 |
| | |- |
| | ! …in cents: |
| | | 0 |
| | | |
| | | 200.0 |
| | | |
| | | 383.3 |
| | | |
| | | 550.0 |
| | | |
| | | 700.0 |
| | | |
| | | 833.3 |
| | | |
| | | 966.7 |
| | | |
| | | 1083.3 |
| | | |
| | | 1200.0 |
| | |- |
| | ! Steps as Freq. Ratio: |
| | | |
| | | 9:8 |
| | | |
| | | 10:9 |
| | | |
| | | 11:10 |
| | | |
| | | 12:11 |
| | | |
| | | 13:12 |
| | | |
| | | 14:13 |
| | | |
| | | 15:14 |
| | | |
| | | 16:15 |
| | | |
| | |- |
| | ! …in cents: |
| | | |
| | | 203.9 |
| | | |
| | | 182.4 |
| | | |
| | | 165.0 |
| | | |
| | | 150.6 |
| | | |
| | | 138.6 |
| | | |
| | | 128.3 |
| | | |
| | | 119.4 |
| | | |
| | | 111.7 |
| | | |
| | |- |
| | ! Nearest degree of 72edo: |
| | | |
| | | 12 |
| | | |
| | | 11 |
| | | |
| | | 10 |
| | | |
| | | 9 |
| | | |
| | | 8 |
| | | |
| | | 8 |
| | | |
| | | 7 |
| | | |
| | | 7 |
| | | |
| | |- |
| | ! …in cents: |
| | | |
| | | 200.0 |
| | | |
| | | 183.3 |
| | | |
| | | 166.7 |
| | | |
| | | 150.0 |
| | | |
| | | 133.3 |
| | | |
| | | 133.3 |
| | | |
| | | 116.7 |
| | | |
| | | 116.7 |
| | | |
| | |} |
| | |
| | == Instruments == |
| | If one can get six 12edo instruments tuned a twelfth-tone apart, it is possible to use these instruments in combination to play the full gamut of 72edo (see Music). |
| | |
| | One can also use a skip fretting system: |
| | * [[Skip fretting system 72 2 27]] |
| | |
| | Alternatively, an appropriately mapped keyboard of sufficient size is usable for playing 72edo: |
| | * [[Lumatone mapping for 72edo]] |
| | |
| | == Music == |
| | ; [[Bryan Deister]] |
| | * [https://www.youtube.com/shorts/VwVp3RVao_k ''microtonal improvisation in 72edo''] (2025) |
| | |
| | ; [[Ambient Esoterica]] |
| | * [https://www.youtube.com/watch?v=seWcDAoQjxY ''Goetic Synchronities''] (2023) |
| | * [https://www.youtube.com/watch?v=CrcdM1e2b6Q ''Rainy Day Generative Pillow''] (2024) |
| | |
| | ; [[Jake Freivald]] |
| | * [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3 ''Lazy Sunday'']{{dead link}} in the [[lazysunday]] scale |
| | |
| | {{Wikipedia|In vain (Haas)}} |
| | ; [[Georg Friedrich Haas]] |
| | * [https://www.youtube.com/watch?v=ix4yA-c-Pi8 ''Blumenstück''] (2000) |
| | * [https://youtu.be/cmX-h7_us7A ''in vain''] (2000) ([https://www.universaledition.com/georg-friedrich-haas-278/works/in-vain-7566 score]) |
| | |
| | ; [[Claudi Meneghin]] |
| | * [http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3 ''Twinkle canon – 72 edo'']{{dead link}} |
| | * [https://www.youtube.com/watch?v=zR0NDgh4944 ''The Miracle Canon'', 3-in-1 on a Ground] |
| | * [https://www.youtube.com/watch?v=w6Bckog1eOM ''Sicilienne in Miracle''] |
| | * [https://www.youtube.com/watch?v=QKeZLtFHfNU ''Arietta with 5 Variations'', for Organ] (2024) |
| | |
| | ; [[Prent Rodgers]] |
| | * [http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 ''June Gloom #9'']{{dead link}} |
| | |
| | ; [[Gene Ward Smith]] |
| | * [https://www.archive.org/details/Kotekant ''Kotekant''] [https://www.archive.org/download/Kotekant/kotekant.mp3 play] (2010) |
| | |
| | ;[[Ivan Wyschnegradsky]] |
| | * [https://www.youtube.com/watch?v=RCcJHCkYQ6U Arc-en-ciel, for 6 pianos in twelfth tones, Op. 37] (1956) |
| | |
| | ; [[James Tenney]] |
| | * [https://www.youtube.com/watch?v=jGsxqU1PhZs&list=OLAK5uy_mKyMEMZW7noeLncJnu-JT65go8w7403DA ''Changes for Six Harps''] |
| | |
| | ; [[Xeno Ov Eleas]] |
| | * [https://www.youtube.com/watch?v=cx7I0NWem5w ''Χenomorphic Ghost Storm''] (2022) |
| | |
| | == External links == |
| | * [http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo] |
| | * [http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music |
| | * [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list |
| | * [https://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo] |
| | * [http://tonalsoft.com/enc/number/72edo.aspx 72-ed2 / 72-edo / 72-ET / 72-tone equal-temperament] on [[Tonalsoft Encyclopedia]] |
| | |
| | [[Category:Listen]] |
| | [[Category:Compton]] |
| | [[Category:Marvel]] |
| | [[Category:Miracle]] |
| | [[Category:Prodigy]] |
| | [[Category:Wizard]] |