72edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 298266014 - Original comment: **
Fredg999 (talk | contribs)
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation"
 
(184 intermediate revisions by 38 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{interwiki
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| de = 72-EDO
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-03 15:03:37 UTC</tt>.<br>
| en = 72edo
: The original revision id was <tt>298266014</tt>.<br>
| es =
: The revision comment was: <tt></tt><br>
| ja =
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
}}
<h4>Original Wikitext content:</h4>
{{Infobox ET}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
{{Wikipedia|72 equal temperament}}
----
{{ED intro}}
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music.


Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.
Each step of 72edo is called a ''[[morion]]'' (plural ''moria)''. This produces a twelfth-tone tuning, with the whole tone measuring 200{{c}}, the same as in [[12edo]]. 72edo is also a superset of [[24edo]], a common and standard tuning of [[Arabic, Turkish, Persian music|Arabic music]], and has itself been used to tune Turkish music.


72-tone equal temperament approximates [[11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[17-limit]], and is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.
Composers that used 72edo include [[Ivan Wyschnegradsky]], [[Julián Carrillo]] (who is better associated with [[96edo]]), [[Georg Friedrich Haas]], [[Ezra Sims]], [[Rick Tagawa]], [[James Tenney]], and the jazz musician [[Joe Maneri]].


72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.
== Theory ==
72edo approximates [[11-limit]] [[just intonation]] exceptionally well. It is [[consistent]] in the [[17-odd-limit]] and is the ninth [[zeta integral edo]]. It is the second edo (after [[58edo|58]]) to be [[consistency|distinctly consistent]] in the [[11-odd-limit]], the first edo to be [[consistency|consistent to distance 2]] in the 11-odd-limit, and the first edo to be consistent in the 12- and 13-[[odd prime sum limit|odd-prime-sum-limit]].  


=Harmonic Scale=
The octave, fifth and fourth are the same size as they would be in 12edo, 72, 42 and 30 steps respectively, but the classic major third ([[5/4]]) measures 23 steps, not 24, and other [[5-limit]] major intervals are one step flat of 12edo while minor ones are one step sharp. The septimal minor seventh ([[7/4]]) is 58 steps, while the undecimal semiaugmented fourth ([[11/8]]) is 33.
Mode 8 of the harmonic series -- [[overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).


|| Overtones in "Mode 8": || 8 ||  || 9 ||  || 10 ||  || 11 ||  || 12 ||  || 13 ||  || 14 ||  || 15 ||  || 16 ||
72et is the only 11-limit regular temperament which treats harmonics 24 to 28 as being equidistant in pitch, splits [[25/24]] into two equal [[49/48]][[~]][[50/49]]'s, and splits [[28/27]] into two equal [[55/54]]~[[56/55]]'s. It is also an excellent tuning for [[miracle]] temperament, especially the 11-limit version, and the related rank-3 temperament [[prodigy]], and is a good tuning for other temperaments and scales, including [[wizard]], [[harry]], [[catakleismic]], [[compton]], [[unidec]] and [[tritikleismic]].
|| ...as JI Ratio from 1/1: || 1/1 ||  || 9/8 ||  || 5/4 ||  || 11/8 ||  || 3/2 ||  || 13/8 ||  || 7/4 ||  || 15/8 ||  || 2/1 ||
|| ...in cents: || 0 ||  || 203.9 ||  || 386.3 ||  || 551.3 ||  || 702.0 ||  || 840.5 ||  || 968.8 ||  || 1088.3 ||  || 1200.0 ||
|| Nearest degree of 72edo: || 0 ||  || 12 ||  || 23 ||  || 33 ||  || 42 ||  || 50 ||  || 58 ||  || 65 ||  || 72 ||
|| ...in cents: || 0 ||  || 200.0 ||  || 383.3 ||  || 550.0 ||  || 700.0 ||  || 833.3 ||  || 966.7 ||  || 1083.3 ||  || 1200.0 ||
|| Steps as Freq. Ratio: ||  || 9:8 ||  || 10:9 ||  || 11:10 ||  || 12:11 ||  || 13:12 ||  || 14:13 ||  || 15:14 ||  || 16:15 ||  ||
|| ...in cents: ||  || 203.9 ||  || 182.4 ||  || 165.0 ||  || 150.6 ||  || 138.6 ||  || 128.3 ||  || 119.4 ||  || 111.7 ||  ||
|| Nearest degree of 72edo: ||  || 12 ||  || 11 ||  || 10 ||  || 9 ||  || 8 ||  || 8 ||  || 7 ||  || 7 ||  ||
|| ...in cents: ||  || 200.0 ||  || 183.3 ||  || 166.7 ||  || 150.0 ||  || 133.3 ||  || 133.3 ||  || 116.7 ||  || 116.7 ||  ||


=Intervals=
The 13th harmonic (octave reduced) is so closely mapped on [[acoustic phi]] that 72edo could be treated as a 2.3.5.7.11.ϕ.17 temperament.
|| degrees || cents value || approximate ratios (17-limit) ||
|| 0 || 0 || 1/1 ||
|| 1 || 16.667 ||  ||
|| 2 || 33.333 ||  ||
|| 3 || 50 ||  ||
|| 4 || 66.667 ||  ||
|| 5 || 83.333 ||  ||
|| 6 || 100 || 17/16, 18/17 ||
|| 7 || 116.667 || 16/15. 15/14 ||
|| 8 || 133.333 || 13/12, 14/13 ||
|| 9 || 150 || 12/11 ||
|| 10 || 166.667 || 11/10 ||
|| 11 || 183.333 || 10/9 ||
|| 12 || 200 || 9/8 ||
|| 13 || 216.667 || 17/15 ||
|| 14 || 233.333 || 8/7 ||
|| 15 || 250 || 15/13 ||
|| 16 || 266.667 || 7/6 ||
|| 17 || 283.333 || 13/11 ||
|| 18 || 300 ||  ||
|| 19 || 316.667 || 6/5 ||
|| 20 || 333.333 || 17/14 ||
|| 21 || 350 || 11/9 ||
|| 22 || 366.667 ||  ||
|| 23 || 383.333 || 5/4 ||
|| 24 || 400 ||  ||
|| 25 || 416.667 || 14/11 ||
|| 26 || 433.333 || 9/7 ||
|| 27 || 450 || 13/10, 22/17 ||
|| 28 || 466.667 || 17/13 ||
|| 29 || 483.333 ||  ||
|| 30 || 500 || 4/3 ||
|| 31 || 516.667 ||  ||
|| 32 || 533.333 || 15/11 ||
|| 33 || 550 || 11/8 ||
|| 34 || 566.667 || 18/13 ||
|| 35 || 583.333 || 7/5 ||
|| 36 || 600 || 17/12, 24/17 ||
|| 37 || 616.667 || 10/7 ||
|| 38 || 633.333 || 13/9 ||
|| 39 || 650 || 16/11 ||
|| 40 || 666.667 || 22/15 ||
|| 41 || 683.333 ||  ||
|| 42 || 700 || 3/2 ||
|| 43 || 716.667 ||  ||
|| 44 || 733.333 || 26/17 ||
|| 45 || 750 || 20/13, 17/11 ||
|| 46 || 766.667 || 14/9 ||
|| 47 || 783.333 || 11/7 ||
|| 48 || 800 ||  ||
|| 49 || 816.667 || 8/5 ||
|| 50 || 833.333 ||  ||
|| 51 || 850 || 18/11 ||
|| 52 || 866.667 || 28/17 ||
|| 53 || 883.333 || 5/3 ||
|| 54 || 900 ||  ||
|| 55 || 916.667 || 22/13 ||
|| 56 || 933.333 || 12/7 ||
|| 57 || 950 || 26/15 ||
|| 58 || 966.667 || 7/4 ||
|| 59 || 983.333 || 30/17 ||
|| 60 || 1000 || 16/9 ||
|| 61 || 1016.667 || 9/5 ||
|| 62 || 1033.333 || 20/11 ||
|| 63 || 1050 || 11/6 ||
|| 64 || 1066.667 || 24/13, 13/7 ||
|| 65 || 1083.333 || 15/8, 28/15 ||
|| 66 || 1100 || 32/17, 17/9 ||
|| 67 || 1116.667 ||  ||
|| 68 || 1133.333 ||  ||
|| 69 || 1150 ||  ||
|| 70 || 1166.667 ||  ||
|| 71 || 1183.333 ||  ||
|| 72 || 1200 || 2/1 ||
= =
=Linear temperaments=
||~ Periods per octave ||~ Generator ||~ Names ||
|| 1 || 1\72 || [[quincy]] ||
|| 1 || 5\72 ||  ||
|| 1 || 7\72 || [[miracle]]/benediction/manna ||
|| 1 || 11\72 ||  ||
|| 1 || 13\72 ||  ||
|| 1 || 17\72 || [[neominor]] ||
|| 1 || 19\72 || [[catakleismic]] ||
|| 1 || 23\72 ||  ||
|| 1 || 25\72 || [[sqrtphi]] ||
|| 1 || 29\72 ||  ||
|| 1 || 31\72 || [[marvo]]/zarvo ||
|| 1 || 35\72 || [[cotritone]] ||
|| 2 || 1\72 ||  ||
|| 2 || 5\72 || [[harry]] ||
|| 2 || 7\72 ||  ||
|| 2 || 11\72 || [[unidec]]/hendec ||
|| 2 || 13\72 || [[wizard]]/lizard/gizzard ||
|| 2 || 17\72 ||  ||
|| 3 || 1\72 ||  ||
|| 3 || 5\72 || [[tritikleismic]] ||
|| 3 || 7\72 ||  ||
|| 3 || 11\72 || [[mirkat]] ||
|| 4 || 1\72 || [[quadritikleismic]] ||
|| 4 || 5\72 ||  ||
|| 4 || 7\72 ||  ||
|| 6 || 1\72 ||  ||
|| 6 || 5\72 ||  ||
|| 8 || 1\72 || [[octoid]] ||
|| 8 || 2\72 || [[octowerck]] ||
|| 8 || 4\72 ||  ||
|| 9 || 1\72 ||  ||
|| 9 || 3\72 || [[ennealimmal]]/ennealimmic ||
|| 12 || 1\72 || [[compton]] ||
|| 18 || 1\72 || [[hemiennealimmal]] ||
|| 24 || 1\72 || [[hours]] ||
|| 36 || 1\72 ||  ||


=Z function=
72edo is the smallest multiple of 12edo that (just barely) has another diatonic fifth, 43\72, an extremely hard diatonic fifth suitable for a 5edo [[circulating temperament]].
72edo is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.


[[image:plot72.png]]
=== Prime harmonics ===
{{Harmonics in equal|72|columns=9}}
{{Harmonics in equal|72|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 72edo (continued)}}


=Music=  
=== Octave stretch ===
[[http://www.archive.org/details/Kotekant|Kotekant]] [[http://www.archive.org/download/Kotekant/kotekant.mp3|play]] by [[Gene Ward Smith]]
72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly [[stretched and compressed tuning|stretching the octave]], using tunings such as [[114edt]] or [[186ed6]]. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies.


=Scales=
=== Subsets and supersets ===
[[smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]]
Since 72 factors into primes as {{nowrap| 2<sup>3</sup> × 3<sup>2</sup> }}, 72edo has subset edos {{EDOs| 2, 3, 4, 6, 8, 9, 12, 18, 24, and 36 }}. [[144edo]], which doubles it, provides a possible correction to its approximate harmonic 13.
[[blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]]
[[keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]]
[[genus24255et72|Euler(24255) genus in 72 equal]]


=External links=  
== Intervals ==
* [[http://en.wikipedia.org/wiki/72_tone_equal_temperament|Wikipedia article on 72edo]]
{| class="wikitable center-all right-2 left-3"
* [[http://orthodoxwiki.org/Byzantine_Chant|OrthodoxWiki Article on Byzantine chant, which uses 72edo]]
|-
* [[http://en.wikipedia.org/wiki/Joe_Maneri|Wikipedia article on Joe Maneri (1927-2009)]]
! #
* [[http://www.ekmelic-music.org/en/index.htmmusik/|Ekmelic Music Society/Gesellschaft für Ekmelische Musik]], a group of composers and researchers dedicated to 72edo music
! Cents
* [[http://sonic-arts.org/tagawa/72edo.htm|Rick Tagawa's 72edo site]], including theory and composers' list
! Approximate ratios<ref group="note">{{sg|limit=19-limit}} For lower limits see [[Table of 72edo intervals]].</ref>
* [[http://soundcloud.com/dawiertx|Danny Wier, composer and musician who specializes in 72-edo]]</pre></div>
! colspan="3" | [[Ups and downs notation]]
<h4>Original HTML content:</h4>
! colspan="3" | [[SKULO interval names|SKULO interval names and notation]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;72edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:16:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;a href="#Harmonic Scale"&gt;Harmonic Scale&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#toc2"&gt; &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#Z function"&gt;Z function&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;
! (K, S, U)
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;hr /&gt;
|-
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or &lt;em&gt;moria&lt;/em&gt;. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of &lt;a class="wiki_link" href="/24edo"&gt;24-tone equal temperament&lt;/a&gt;, a common and standard tuning of &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;Arabic&lt;/a&gt; music, and has itself been used to tune Turkish music.&lt;br /&gt;
| 0
&lt;br /&gt;
| 0.0
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with &lt;a class="wiki_link" href="/96edo"&gt;96-edo&lt;/a&gt;), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.&lt;br /&gt;
| 1/1
&lt;br /&gt;
| P1
72-tone equal temperament approximates &lt;a class="wiki_link" href="/11-limit"&gt;11-limit just intonation&lt;/a&gt; exceptionally well, is consistent in the &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt;, and is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;Zeta integral tuning&lt;/a&gt;. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.&lt;br /&gt;
| perfect unison
&lt;br /&gt;
| D
72 is an excellent tuning for &lt;a class="wiki_link" href="/Gamelismic%20clan"&gt;miracle temperament&lt;/a&gt;, especially the 11-limit version, and the related rank three temperament &lt;a class="wiki_link" href="/Marvel%20family#Prodigy"&gt;prodigy&lt;/a&gt;, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.&lt;br /&gt;
| P1
&lt;br /&gt;
| perfect unison
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Harmonic Scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Harmonic Scale&lt;/h1&gt;
| D
Mode 8 of the harmonic series -- &lt;a class="wiki_link" href="/overtone%20scales"&gt;overtones 8 through 16&lt;/a&gt;, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).&lt;br /&gt;
| D
&lt;br /&gt;
|-
| 1
| 16.7
| 81/80, 91/90, 99/98, 100/99, 105/104
| ^1
| up unison
| ^D
| K1, L1
| comma-wide unison, large unison
| KD, LD
| KD
|-
| 2
| 33.3
| 45/44, 49/48, 50/49, 55/54, 64/63
| ^^
| dup unison
| ^^D
| S1, O1
| super unison, on unison
| SD, OD
| SD
|-
| 3
| 50.0
| 33/32, 36/35, 40/39
| ^<sup>3</sup>1, v<sup>3</sup>m2
| trup unison, trudminor 2nd
| ^<sup>3</sup>D, v<sup>3</sup>Eb
| U1, H1, hm2
| uber unison, hyper unison, hypominor 2nd
| UD, HD, uEb
| UD, uEb
|-
| 4
| 66.7
| 25/24, 26/25, 27/26, 28/27
| vvm2
| dudminor 2nd
| vvEb
| kkA1, sm2
| classic aug unison, subminor 2nd
| kkD#, sEb
| sD#, (kkD#), sEb
|-
| 5
| 83.3
| 20/19, 21/20, 22/21
| vm2
| downminor 2nd
| vEb
| kA1, lm2
| comma-narrow aug unison, little minor 2nd
| kD#, lEb
| kD#, kEb
|-
| 6
| 100.0
| 17/16, 18/17, 19/18
| m2
| minor 2nd
| Eb
| m2
| minor 2nd
| Eb
| Eb
|-
| 7
| 116.7
| 15/14, 16/15
| ^m2
| upminor 2nd
| ^Eb
| Km2
| classic minor 2nd
| KEb
| KEb
|-
| 8
| 133.3
| 13/12, 14/13, 27/25
| ^^m2, v~2
| dupminor 2nd, downmid 2nd
| ^^Eb
| Om2
| on minor 2nd
| OEb
| SEb
|-
| 9
| 150.0
| 12/11
| ~2
| mid 2nd
| v<sup>3</sup>E
| N2
| neutral 2nd
| UEb/uE
| UEb/uE
|-
| 10
| 166.7
| 11/10
| ^~2, vvM2
| upmid 2nd, dudmajor 2nd
| vvE
| oM2
| off major 2nd
| oE
| sE
|-
| 11
| 183.3
| 10/9
| vM2
| downmajor 2nd
| vE
| kM2
| classic/comma-narrow major 2nd
| kE
| kE
|-
| 12
| 200.0
| 9/8
| M2
| major 2nd
| E
| M2
| major 2nd
| E
| E
|-
| 13
| 216.7
| 17/15, 25/22
| ^M2
| upmajor 2nd
| ^E
| LM2
| large major 2nd
| LE
| KE
|-
| 14
| 233.3
| 8/7
| ^^M2
| dupmajor 2nd
| ^^E
| SM2
| supermajor 2nd
| SE
| SE
|-
| 15
| 250.0
| 15/13, 22/19
| ^<sup>3</sup>M2, <br>v<sup>3</sup>m3
| trupmajor 2nd,<br>trudminor 3rd
| ^<sup>3</sup>E, <br>v<sup>3</sup>F
| HM2, hm3
| hypermajor 2nd, hypominor 3rd
| HE, hF
| UE, uF
|-
| 16
| 266.7
| 7/6
| vvm3
| dudminor 3rd
| vvF
| sm3
| subminor 3rd
| sF
| sF
|-
| 17
| 283.3
| 13/11, 20/17
| vm3
| downminor 3rd
| vF
| lm3
| little minor 3rd
| lF
| kF
|-
| 18
| 300.0
| 19/16, 25/21, 32/27
| m3
| minor 3rd
| F
| m3
| minor 3rd
| F
| F
|-
| 19
| 316.7
| 6/5
| ^m3
| upminor 3rd
| ^F
| Km3
| classic minor 3rd
| KF
| KF
|-
| 20
| 333.3
| 17/14, 39/32, 40/33
| ^^m3, v~3
| dupminor 3rd, downmid 3rd
| ^^F
| Om3
| on minor third
| OF
| SF
|-
| 21
| 350.0
| 11/9, 27/22
| ~3
| mid 3rd
| ^<sup>3</sup>F
| N3
| neutral 3rd
| UF/uF#
| UF/uF#
|-
| 22
| 366.7
| 16/13, 21/17, 26/21
| ^~3, vvM3
| upmid 3rd, dudmajor 3rd
| vvF#
| oM3
| off major 3rd
| oF#
| sF#
|-
| 23
| 383.3
| 5/4
| vM3
| downmajor 3rd
| vF#
| kM3
| classic major 3rd
| kF#
| kF#
|-
| 24
| 400.0
| 24/19
| M3
| major 3rd
| F#
| M3
| major 3rd
| F#
| F#
|-
| 25
| 416.7
| 14/11
| ^M3
| upmajor 3rd
| ^F#
| LM3
| large major 3rd
| LF#
| KF#
|-
| 26
| 433.3
| 9/7
| ^^M3
| dupmajor 3rd
| ^^F#
| SM3
| supermajor 3rd
| SF#
| SF#
|-
| 27
| 450.0
| 13/10, 22/17
| ^<sup>3</sup>M3, v<sup>3</sup>4
| trupmajor 3rd, trud 4th
| ^<sup>3</sup>F#, v<sup>3</sup>G
| HM3, h4
| hypermajor 3rd, hypo 4th
| HF#, hG
| UF#, uG
|-
| 28
| 466.7
| 17/13, 21/16
| vv4
| dud 4th
| vvG
| s4
| sub 4th
| sG
| sG
|-
| 29
| 483.3
| 33/25
| v4
| down 4th
| vG
| l4
| little 4th
| lG
| kG
|-
| 30
| 500.0
| 4/3
| P4
| perfect 4th
| G
| P4
| perfect 4th
| G
| G
|-
| 31
| 516.7
| 27/20
| ^4
| up 4th
| ^G
| K4
| comma-wide 4th
| KG
| KG
|-
| 32
| 533.3
| 15/11, 19/14, ''26/19''
| ^^4, v~4
| dup 4th, downmid 4th
| ^^G
| O4
| on 4th
| OG
| SG
|-
| 33
| 550.0
| 11/8
| ~4
| mid 4th
| ^<sup>3</sup>G
| U4/N4
| uber 4th / neutral 4th
| UG
| UG
|-
| 34
| 566.7
| 18/13, 25/18
| ^~4, vvA4
| upmid 4th, dudaug 4th
| vvG#
| kkA4, sd5
| classic aug 4th, sub dim 5th
| kkG#, sAb
| SG#, (kkG#), sAb
|-
| 35
| 583.3
| 7/5
| vA4, vd5
| downaug 4th, <br>downdim 5th
| vG#, vAb
| kA4, ld5
| comma-narrow aug 4th, little dim 5th
| kG#, lAb
| kG#, kAb
|-
| 36
| 600.0
| 17/12, 24/17
| A4, d5
| aug 4th, dim 5th
| G#, Ab
| A4, d5
| aug 4th, dim 5th
| G#, Ab
| G#, Ab
|-
| 37
| 616.7
| 10/7
| ^A4, ^d5
| upaug 4th, updim 5th
| ^G#, ^Ab
| LA4, Kd5
| large aug 4th, comma-wide dim 5th
| LG#, KAb
| KG#, KAb
|-
| 38
| 633.3
| 13/9, 36/25
| v~5, ^^d5
| downmid 5th, <br>dupdim 5th
| ^^Ab
| SA4, KKd5
| super aug 4th, classic dim 5th
| SG#, KKAb
| SG#, SAb, (KKAb)
|-
| 39
| 650.0
| 16/11
| ~5
| mid 5th
| v<sup>3</sup>A
| u5/N5
| unter 5th / neutral 5th
| uA
| uA
|-
| 40
| 666.7
| ''19/13'', 22/15, 28/19
| vv5, ^~5
| dud 5th, upmid 5th
| vvA
| o5
| off 5th
| oA
| sA
|-
| 41
| 683.3
| 40/27
| v5
| down 5th
| vA
| k5
| comma-narrow 5th
| kA
| kA
|-
| 42
| 700.0
| 3/2
| P5
| perfect 5th
| A
| P5
| perfect 5th
| A
| A
|-
| 43
| 716.7
| 50/33
| ^5
| up 5th
| ^A
| L5
| large fifth
| LA
| KA
|-
| 44
| 733.3
| 26/17, 32/21
| ^^5
| dup 5th
| ^^A
| S5
| super fifth
| SA
| SA
|-
| 45
| 750.0
| 17/11, 20/13
| ^<sup>3</sup>5, v<sup>3</sup>m6
| trup 5th, trudminor 6th
| ^<sup>3</sup>A, v<sup>3</sup>Bb
| H5, hm6
| hyper fifth, hypominor 6th
| HA, hBb
| UA, uBb
|-
| 46
| 766.7
| 14/9
| vvm6
| dudminor 6th
| vvBb
| sm6
| superminor 6th
| sBb
| sBb
|-
| 47
| 783.3
| 11/7
| vm6
| downminor 6th
| vBb
| lm6
| little minor 6th
| lBb
| kBb
|-
| 48
| 800.0
| 19/12
| m6
| minor 6th
| Bb
| m6
| minor 6th
| Bb
| Bb
|-
| 49
| 816.7
| 8/5
| ^m6
| upminor 6th
| ^Bb
| Km6
| classic minor 6th
| kBb
| kBb
|-
| 50
| 833.3
| 13/8, 21/13, 34/21
| ^^m6, v~6
| dupminor 6th, downmid 6th
| ^^Bb
| Om6
| on minor 6th
| oBb
| sBb
|-
| 51
| 850.0
| 18/11, 44/27
| ~6
| mid 6th
| v<sup>3</sup>B
| N6
| neutral 6th
| UBb, uB
| UBb, uB
|-
| 52
| 866.7
| 28/17, 33/20, 64/39
| ^~6, vvM6
| upmid 6th, dudmajor 6th
| vvB
| oM6
| off major 6th
| oB
| sB
|-
| 53
| 883.3
| 5/3
| vM6
| downmajor 6th
| vB
| kM6
| classic major 6th
| kB
| kB
|-
| 54
| 900.0
| 27/16, 32/19, 42/25
| M6
| major 6th
| B
| M6
| major 6th
| B
| B
|-
| 55
| 916.7
| 17/10, 22/13
| ^M6
| upmajor 6th
| ^B
| LM6
| large major 6th
| LB
| KB
|-
| 56
| 933.3
| 12/7
| ^^M6
| dupmajor 6th
| ^^B
| SM6
| supermajor 6th
| SB
| SB
|-
| 57
| 950.0
| 19/11, 26/15
| ^<sup>3</sup>M6, <br>v<sup>3</sup>m7
| trupmajor 6th,<br>trudminor 7th
| ^<sup>3</sup>B, <br>v<sup>3</sup>C
| HM6, hm7
| hypermajor 6th, hypominor 7th
| HB, hC
| UB, uC
|-
| 58
| 966.7
| 7/4
| vvm7
| dudminor 7th
| vvC
| sm7
| subminor 7th
| sC
| sC
|-
| 59
| 983.3
| 30/17, 44/25
| vm7
| downminor 7th
| vC
| lm7
| little minor 7th
| lC
| kC
|-
| 60
| 1000.0
| 16/9
| m7
| minor 7th
| C
| m7
| minor 7th
| C
| C
|-
| 61
| 1016.7
| 9/5
| ^m7
| upminor 7th
| ^C
| Km7
| classic/comma-wide minor 7th
| KC
| KC
|-
| 62
| 1033.3
| 20/11
| ^^m7, v~7
| dupminor 7th, downmid 7th
| ^^C
| Om7
| on minor 7th
| OC
| SC
|-
| 63
| 1050.0
| 11/6
| ~7
| mid 7th
| ^<sup>3</sup>C
| N7, hd8
| neutral 7th, hypo dim 8ve
| UC/uC#, hDb
| UC/uC#, uDb
|-
| 64
| 1066.7
| 13/7, 24/13, 50/27
| ^~7, vvM7
| upmid 7th, dudmajor 7th
| vvC#
| oM7, sd8
| off major 7th, sub dim 8ve
| oC#, sDb
| sC#, sDb
|-
| 65
| 1083.3
| 15/8, 28/15
| vM7
| downmajor 7th
| vC#
| kM7, ld8
| classic major 7th, little dim 8ve
| kC#, lDb
| kC#, kDb
|-
| 66
| 1100.0
| 17/9, 32/17, 36/19
| M7
| major 7th
| C#
| M7, d8
| major 7th, dim 8ve
| C#, Db
| C#, Db
|-
| 67
| 1116.7
| 19/10, 21/11, 40/21
| ^M7
| upmajor 7th
| ^C#
| LM7, Kd8
| large major 7th, comma-wide dim 8ve
| LC#, KDb
| KC#, KDb
|-
| 68
| 1133.3
| 25/13, 27/14, 48/25, 52/27
| ^^M7
| dupmajor 7th
| ^^C#
| SM7, KKd8
| supermajor 7th, classic dim 8ve
| SC#, KKDb
| SC#, SDb, (KKDb)
|-
| 69
| 1150.0
| 35/18, 39/20, 64/33
| ^<sup>3</sup>M7, v<sup>3</sup>8
| trupmajor 7th, trud octave
| ^<sup>3</sup>C#, v<sup>3</sup>D
| HM7, u8, h8
| hypermajor 7th, unter 8ve, hypo 8ve
| HC#, uD, hD
| UC#, uDb, uD
|-
| 70
| 1166.7
| 49/25, 55/28, 63/32, 88/45, 96/49
| vv8
| dud octave
| vvD
| s8, o8
| sub 8ve, off 8ve
| sD, oD
| sD
|-
| 71
| 1183.3
| 99/50, 160/81, 180/91, 196/99, 208/105
| v8
| down octave
| vD
| k8, l8
| comma-narrow 8ve, little 8ve
| kD, lD
| kD
|-
| 72
| 1200.0
| 2/1
| P8
| perfect octave
| D
| P8
| perfect octave
| D
| D
|}
<references group="note" />


=== Interval quality and chord names in color notation ===
Combining ups and downs notation with [[color notation]], qualities can be loosely associated with colors:


&lt;table class="wiki_table"&gt;
{| class="wikitable center-all"
    &lt;tr&gt;
|-
        &lt;td&gt;Overtones in &amp;quot;Mode 8&amp;quot;:&lt;br /&gt;
! Quality
&lt;/td&gt;
! [[Color notation|Color]]
        &lt;td&gt;8&lt;br /&gt;
! Monzo format
&lt;/td&gt;
! Examples
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| dudminor
        &lt;td&gt;9&lt;br /&gt;
| zo
&lt;/td&gt;
| (a b 0 1)
        &lt;td&gt;&lt;br /&gt;
| 7/6, 7/4
&lt;/td&gt;
|-
        &lt;td&gt;10&lt;br /&gt;
| minor
&lt;/td&gt;
| fourthward wa
        &lt;td&gt;&lt;br /&gt;
| (a b), b < -1
&lt;/td&gt;
| 32/27, 16/9
        &lt;td&gt;11&lt;br /&gt;
|-
&lt;/td&gt;
| upminor
        &lt;td&gt;&lt;br /&gt;
| gu
&lt;/td&gt;
| (a b -1)
        &lt;td&gt;12&lt;br /&gt;
| 6/5, 9/5
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| rowspan="2" | dupminor, <br>downmid
&lt;/td&gt;
| luyo
        &lt;td&gt;13&lt;br /&gt;
| (a b 1 0 -1)
&lt;/td&gt;
| 15/11
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| tho
        &lt;td&gt;14&lt;br /&gt;
| (a b 0 0 0 1)
&lt;/td&gt;
| 13/8, 13/9
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| rowspan="2" | mid
        &lt;td&gt;15&lt;br /&gt;
| ilo
&lt;/td&gt;
| (a b 0 0 1)
        &lt;td&gt;&lt;br /&gt;
| 11/9, 11/6
&lt;/td&gt;
|-
        &lt;td&gt;16&lt;br /&gt;
| lu
&lt;/td&gt;
| (a b 0 0 -1)
    &lt;/tr&gt;
| 12/11, 18/11
    &lt;tr&gt;
|-
        &lt;td&gt;...as JI Ratio from 1/1:&lt;br /&gt;
| rowspan="2" | upmid, <br>dudmajor
&lt;/td&gt;
| logu
        &lt;td&gt;1/1&lt;br /&gt;
| (a b -1 0 1)
&lt;/td&gt;
| 11/10
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| thu
        &lt;td&gt;9/8&lt;br /&gt;
| (a b 0 0 0 -1)
&lt;/td&gt;
| 16/13, 18/13
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| downmajor
        &lt;td&gt;5/4&lt;br /&gt;
| yo
&lt;/td&gt;
| (a b 1)
        &lt;td&gt;&lt;br /&gt;
| 5/4, 5/3
&lt;/td&gt;
|-
        &lt;td&gt;11/8&lt;br /&gt;
| major
&lt;/td&gt;
| fifthward wa
        &lt;td&gt;&lt;br /&gt;
| (a b), b > 1
&lt;/td&gt;
| 9/8, 27/16
        &lt;td&gt;3/2&lt;br /&gt;
|-
&lt;/td&gt;
| dupmajor
        &lt;td&gt;&lt;br /&gt;
| ru
&lt;/td&gt;
| (a b 0 -1)
        &lt;td&gt;13/8&lt;br /&gt;
| 9/7, 12/7
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| rowspan="2" | trupmajor, <br>trudminor
&lt;/td&gt;
| thogu
        &lt;td&gt;7/4&lt;br /&gt;
| (a b -1 0 0 1)
&lt;/td&gt;
| 13/10
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| thuyo
        &lt;td&gt;15/8&lt;br /&gt;
| (a b 1 0 0 -1)
&lt;/td&gt;
| 15/13
        &lt;td&gt;&lt;br /&gt;
|}
&lt;/td&gt;
All 72edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads:
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203.9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;386.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;702.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;840.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;968.8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1088.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Nearest degree of 72edo:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;383.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;700.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;833.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;966.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1083.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Steps as Freq. Ratio:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9:8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10:9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11:10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12:11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13:12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14:13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15:14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16:15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203.9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;182.4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150.6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;138.6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;128.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;119.4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;111.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Nearest degree of 72edo:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;...in cents:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;183.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150.0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;133.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;133.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
{| class="wikitable center-all"
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h1&gt;
|-
! [[Color notation|Color of the 3rd]]
! JI chord
! Notes as edosteps
! Notes of C chord
! Written name
! Spoken name
|-
| zo
| 6:7:9
| 0-16-42
| C vvEb G
| Cvvm
| C dudminor
|-
| gu
| 10:12:15
| 0-19-42
| C ^Eb G
| C^m
| C upminor
|-
| ilo
| 18:22:27
| 0-21-42
| C v<span style="font-size: 90%; vertical-align: super;">3</span>E G
| C~
| C mid
|-
| yo
| 4:5:6
| 0-23-42
| C vE G
| Cv
| C downmajor or C down
|-
| ru
| 14:18:27
| 0-26-42
| C ^^E G
| C^^
| C dupmajor or C dup
|}
For a more complete list, see [[Ups and downs notation #Chord names in other EDOs]].


&lt;table class="wiki_table"&gt;
=== Relationship between primes and rings ===
    &lt;tr&gt;
In 72tet, there are 6 [[ring number|rings]]. 12edo is the plain ring; thus every 6 degrees is the 3-limit.
        &lt;td&gt;degrees&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;cents value&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;approximate ratios (17-limit)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;66.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;83.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;100&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/16, 18/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/15. 15/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;133.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12, 14/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;183.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/15&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;233.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;250&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;283.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;316.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;333.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;350&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;366.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;383.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;400&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;416.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;433.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;450&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10, 22/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;466.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;483.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;500&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;516.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;533.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;566.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;583.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/12, 24/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;616.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;633.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;650&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;666.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/15&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;683.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;700&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;716.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;733.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;750&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/13, 17/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;766.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;783.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;816.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;833.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;850&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;866.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;883.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;900&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;916.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;933.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;950&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/15&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;966.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;983.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;30/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1016.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1033.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1050&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1066.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/13, 13/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1083.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/8, 28/15&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;66&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1100&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32/17, 17/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;67&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1116.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1133.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1166.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1183.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt; &lt;/h1&gt;
Then, after each subsequent degree in reverse, a new prime limit is unveiled from it:
  &lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Linear temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Linear temperaments&lt;/h1&gt;
* −1 degree (the down ring) corrects 81/64 to 5/4 via 80/81
* −2 degrees (the dud ring) corrects 16/9 to 7/4 via 63/64
* +3 degrees (the trup ring) corrects 4/3 to 11/8 via 33/32
* +2 degrees (the dup ring) corrects 128/81 to 13/8 via 1053/1024
* 0 degrees (the plain ring) corrects 256/243 to 17/16 via 4131/4096
* 0 degrees (the plain ring) corrects 32/27 to 19/16 via 513/512
Thus the product of a ratio's monzo with {{map| 0 0 -1 -2 3 2 0 0 }}, modulo 6, specifies which ring the ratio lies on.


&lt;table class="wiki_table"&gt;
== Notations ==
    &lt;tr&gt;
=== Ups and downs notation ===
        &lt;th&gt;Periods per octave&lt;br /&gt;
72edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc.
&lt;/th&gt;
{{Sharpness-sharp6a}}
        &lt;th&gt;Generator&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Names&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/quincy"&gt;quincy&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/miracle"&gt;miracle&lt;/a&gt;/benediction/manna&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/neominor"&gt;neominor&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/catakleismic"&gt;catakleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/sqrtphi"&gt;sqrtphi&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;29\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;31\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/marvo"&gt;marvo&lt;/a&gt;/zarvo&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/cotritone"&gt;cotritone&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/harry"&gt;harry&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/unidec"&gt;unidec&lt;/a&gt;/hendec&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/wizard"&gt;wizard&lt;/a&gt;/lizard/gizzard&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/tritikleismic"&gt;tritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/mirkat"&gt;mirkat&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/quadritikleismic"&gt;quadritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/octoid"&gt;octoid&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/octowerck"&gt;octowerck&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/ennealimmal"&gt;ennealimmal&lt;/a&gt;/ennealimmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/compton"&gt;compton&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/hemiennealimmal"&gt;hemiennealimmal&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/hours"&gt;hours&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
Half-sharps and half-flats can be used to avoid triple arrows:
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Z function"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Z function&lt;/h1&gt;
{{Sharpness-sharp6b}}
72edo is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt;, as well as being a peak and gap edo, and the maximum value of the &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function"&gt;Z function&lt;/a&gt; in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.&lt;br /&gt;
 
&lt;br /&gt;
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]:
&lt;!-- ws:start:WikiTextLocalImageRule:1277:&amp;lt;img src=&amp;quot;/file/view/plot72.png/219772696/plot72.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:1277 --&gt;&lt;br /&gt;
{{Sharpness-sharp6}}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Music&lt;/h1&gt;
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals:
&lt;a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow"&gt;Kotekant&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
{{Sharpness-sharp6-qt}}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Scales&lt;/h1&gt;
=== Sagittal notation ===
&lt;a class="wiki_link" href="/smithgw72a"&gt;smithgw72a&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72b"&gt;smithgw72b&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72c"&gt;smithgw72c&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72d"&gt;smithgw72d&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72e"&gt;smithgw72e&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72f"&gt;smithgw72f&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72g"&gt;smithgw72g&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72h"&gt;smithgw72h&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72i"&gt;smithgw72i&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72j"&gt;smithgw72j&lt;/a&gt;&lt;br /&gt;
This notation uses the same sagittal sequence as EDOs [[65edo#Sagittal notation|65-EDO]] and [[79edo#Sagittal notation|79]], and is a superset of the notations for EDOs [[36edo#Sagittal notation|36]], [[24edo#Sagittal notation|24]], [[18edo#Sagittal notation|18]], [[12edo#Sagittal notation|12]], [[8edo#Sagittal notation|8]], and [[6edo#Sagittal notation|6]].
&lt;a class="wiki_link" href="/blackjack"&gt;blackjack&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_8"&gt;miracle_8&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_10"&gt;miracle_10&lt;/a&gt;, [[miracle_12], &lt;a class="wiki_link" href="/miracle_12a"&gt;miracle_12a&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_24hi"&gt;miracle_24hi&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_24lo"&gt;miracle_24lo&lt;/a&gt;&lt;br /&gt;
 
&lt;a class="wiki_link" href="/keenanmarvel"&gt;keenanmarvel&lt;/a&gt;, &lt;a class="wiki_link" href="/xenakis_chrome"&gt;xenakis_chrome&lt;/a&gt;, &lt;a class="wiki_link" href="/xenakis_diat"&gt;xenakis_diat&lt;/a&gt;, &lt;a class="wiki_link" href="/xenakis_schrome"&gt;xenakis_schrome&lt;/a&gt;&lt;br /&gt;
==== Evo flavor ====
&lt;a class="wiki_link" href="/genus24255et72"&gt;Euler(24255) genus in 72 equal&lt;/a&gt;&lt;br /&gt;
<imagemap>
&lt;br /&gt;
File:72-EDO_Evo_Sagittal.svg
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;External links&lt;/h1&gt;
desc none
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow"&gt;Wikipedia article on 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow"&gt;OrthodoxWiki Article on Byzantine chant, which uses 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow"&gt;Wikipedia article on Joe Maneri (1927-2009)&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow"&gt;Ekmelic Music Society/Gesellschaft für Ekmelische Musik&lt;/a&gt;, a group of composers and researchers dedicated to 72edo music&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow"&gt;Rick Tagawa's 72edo site&lt;/a&gt;, including theory and composers' list&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://soundcloud.com/dawiertx" rel="nofollow"&gt;Danny Wier, composer and musician who specializes in 72-edo&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 719 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 220 106 [[64/63]]
rect 220 80 340 106 [[33/32]]
default [[File:72-EDO_Evo_Sagittal.svg]]
</imagemap>
 
==== Revo flavor ====
<imagemap>
File:72-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 695 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 220 106 [[64/63]]
rect 220 80 340 106 [[33/32]]
default [[File:72-EDO_Revo_Sagittal.svg]]
</imagemap>
 
==== Evo-SZ flavor ====
<imagemap>
File:72-EDO_Evo-SZ_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 711 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 220 106 [[64/63]]
rect 220 80 340 106 [[33/32]]
default [[File:72-EDO_Evo-SZ_Sagittal.svg]]
</imagemap>
 
From the appendix to [[The Sagittal Songbook]] by [[Jacob Barton|Jacob A. Barton]], a diagram of how to notate 72edo in the Revo flavor of Sagittal:
 
[[File:72edo Sagittal.png|800px]]
 
=== Ivan Wyschnegradsky's notation ===
{{Sharpness-sharp6-iw|72}}
 
== Approximation to JI ==
[[File:72ed2.svg|250px|thumb|right|none|alt=alt : Your browser has no SVG support.|Selected intervals approximated in 72edo]]
 
=== Interval mappings ===
{{Q-odd-limit intervals|72}}
 
=== Zeta properties ===
72edo is the ninth [[zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[the Riemann zeta function and tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.
 
[[File:plot72.png|alt=plot72.png|plot72.png]]
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5
| 15625/15552, 531441/524288
| {{Mapping| 72 114 167 }}
| +0.839
| 0.594
| 3.56
|-
| 2.3.5.7
| 225/224, 1029/1024, 4375/4374
| {{Mapping| 72 114 167 202 }}
| +0.822
| 0.515
| 3.09
|-
| 2.3.5.7.11
| 225/224, 243/242, 385/384, 4000/3993
| {{Mapping| 72 114 167 202 249 }}
| +0.734
| 0.493
| 2.96
|-
| 2.3.5.7.11.13
| 169/168, 225/224, 243/242, 325/324, 385/384
| {{Mapping| 72 114 167 202 249 266 }}
| +0.936
| 0.638
| 3.82
|-
| 2.3.5.7.11.13.17
| 169/168, 221/220, 225/224, 243/242, 273/272, 325/324
| {{Mapping| 72 114 167 202 249 266 294 }}
| +0.975
| 0.599
| 3.59
|-
| 2.3.5.7.11.13.17.19
| 153/152, 169/168, 210/209, 221/220, 225/224, 243/242, 273/272
| {{Mapping| 72 114 167 202 249 266 294 306 }}
| +0.780
| 0.762
| 4.57
|}
* 72et has lower relative errors than any previous equal temperaments in the 7-, 11-, 13-, 17-, and 19-limit. The next equal temperaments doing better in these subgroups are [[99edo|99]], [[270edo|270]], [[224edo|224]], [[494edo|494]], and [[217edo|217]], respectively.
 
=== Commas ===
Commas tempered out by 72edo include…
 
{| class="commatable wikitable center-1 center-2 right-4"
|-
! [[Harmonic limit|Prime<br>limit]]
! [[Ratio]]<ref group="note">{{rd}}</ref>
! [[Monzo]]
! [[Cents]]
! Name(s)
|-
| 3
| [[531441/524288|(12 digits)]]
| {{Monzo| -19 12 }}
| 23.46
| Pythagorean comma
|-
| 5
| [[15625/15552]]
| {{Monzo| -6 -5 6 }}
| 8.11
| Kleisma
|-
| 5
| [[34171875/33554432|(16 digits)]]
| {{Monzo| -25 7 6 }}
| 31.57
| [[Ampersand comma]]
|-
| 5
| [[129140163/128000000|(18 digits)]]
| {{Monzo| -13 17 -6 }}
| 15.35
| [[Graviton]]
|-
| 5
| <abbr title="7629394531250/7625597484987">(26 digits)</abbr>
| {{Monzo| 1 -27 18 }}
| 0.86
| [[Ennealimma]]
|-
| 7
| [[225/224]]
| {{Monzo| -5 2 2 -1 }}
| 7.71
| Marvel comma
|-
| 7
| [[1029/1024]]
| {{Monzo| -10 1 0 3 }}
| 8.43
| Gamelisma
|-
| 7
| [[2401/2400]]
| {{Monzo| -5 -1 -2 4 }}
| 0.72
| Breedsma
|-
| 7
| [[4375/4374]]
| {{Monzo| -1 -7 4 1 }}
| 0.40
| Ragisma
|-
| 7
| [[16875/16807]]
| {{Monzo| 0 3 4 -5 }}
| 6.99
| Mirkwai comma
|-
| 7
| [[19683/19600]]
| {{Monzo| -4 9 -2 -2 }}
| 7.32
| Cataharry comma
|-
| 7
| <abbr title="420175/419904">(12 digits)</abbr>
| {{Monzo | -6 -8 2 5 }}
| 1.12
| [[Wizma]]
|-
| 7
| <abbr title="250047/250000">(12 digits)</abbr>
| {{Monzo| -4 6 -6 3 }}
| 0.33
| [[Landscape comma]]
|-
| 11
| [[243/242]]
| {{Monzo| -1 5 0 0 -2}}
| 7.14
| Rastma
|-
| 11
| [[385/384]]
| {{Monzo| -7 -1 1 1 1 }}
| 4.50
| Keenanisma
|-
| 11
| [[441/440]]
| {{Monzo| -3 2 -1 2 -1 }}
| 3.93
| Werckisma
|-
| 11
| [[540/539]]
| {{Monzo| 2 3 1 -2 -1 }}
| 3.21
| Swetisma
|-
| 11
| [[1375/1372]]
| {{Monzo| -2 0 3 -3 1 }}
| 3.78
| Moctdel comma
|-
| 11
| [[3025/3024]]
| {{Monzo| -4 -3 2 -1 2 }}
| 0.57
| Lehmerisma
|-
| 11
| [[4000/3993]]
| {{Monzo| 5 -1 3 0 -3 }}
| 3.03
| Wizardharry comma
|-
| 11
| [[6250/6237]]
| {{Monzo| 1 -4 5 -1 -1 }}
| 3.60
| Liganellus comma
|-
| 11
| [[9801/9800]]
| {{Monzo| -3 4 -2 -2 2 }}
| 0.18
| Kalisma
|-
| 11
| <abbr title="1771561/1769472">(14 digits)</abbr>
| {{Monzo| 16 -3 0 0 6 }}
| 2.04
| [[Nexus comma]]
|-
| 13
| [[169/168]]
| {{Monzo| -3 -1 0 -1 0 2 }}
| 10.27
| Buzurgisma
|-
| 13
| [[325/324]]
| {{Monzo| -2 -4 2 0 0 1 }}
| 5.34
| Marveltwin comma
|-
| 13
| [[351/350]]
| {{Monzo| -1 3 -2 -1 0 1 }}
| 4.94
| Ratwolfsma
|-
| 13
| [[364/363]]
| {{Monzo| 2 -1 0 1 -2 1 }}
| 4.76
| Minor minthma
|-
| 13
| [[625/624]]
| {{Monzo| -4 -1 4 0 0 -1 }}
| 2.77
| Tunbarsma
|-
| 13
| [[676/675]]
| {{Monzo| 2 -3 -2 0 0 2 }}
| 2.56
| Island comma
|-
| 13
| [[729/728]]
| {{Monzo| -3 6 0 -1 0 -1 }}
| 2.38
| Squbema
|-
| 13
| [[1001/1000]]
| {{Monzo| -3 0 -3 1 1 1 }}
| 1.73
| Sinbadma
|-
| 13
| [[1575/1573]]
| {{Monzo| 2 2 1 -2 -1 }}
| 2.20
| Nicola
|-
| 13
| [[1716/1715]]
| {{Monzo| 2 1 -1 -3 1 1 }}
| 1.01
| Lummic comma
|-
| 13
| [[2080/2079]]
| {{Monzo| 5 -3 1 -1 -1 1 }}
| 0.83
| Ibnsinma
|-
| 13
| [[6656/6655]]
| {{Monzo| 9 0 -1 0 -3 1 }}
| 0.26012
| Jacobin comma
|}
<references group="note" />
 
=== Rank-2 temperaments ===
* [[List of edo-distinct 72et rank two temperaments]]
 
72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit.
 
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperament
|-
| 1
| 1\72
| 16.7
| 105/104
| [[Quincy]]
|-
| 1
| 5\72
| 83.3
| 21/20
| [[Marvolo]]
|-
| 1
| 7\72
| 116.7
| 15/14
| [[Miracle]] / benediction / manna
|-
| 1
| 17\72
| 283.3
| 13/11
| [[Neominor]]
|-
| 1
| 19\72
| 316.7
| 6/5
| [[Catakleismic]]
|-
| 1
| 25\72
| 416.7
| 14/11
| [[Sqrtphi]]
|-
| 1
| 29\72
| 483.3
| 45/34
| [[Hemiseven]]
|-
| 1
| 31\72
| 516.7
| 27/20
| [[Marvo]] / [[zarvo]]
|-
| 1
| 35\72
| 583.3
| 7/5
| [[Cotritone]]
|-
| 2
| 5\72
| 83.3
| 21/20
| [[Harry]]
|-
| 2
| 7\72
| 116.7
| 15/14
| [[Semimiracle]]
|-
| 2
| 11\72
| 183.3
| 10/9
| [[Unidec]] / hendec
|-
| 2
| 21\72<br>(19\72)
| 316.7<br>(283.3)
| 6/5<br>(13/11)
| [[Bikleismic]]
|-
| 2
| 23\72<br>(13\72)
| 383.3<br>(216.7)
| 5/4<br>(17/15)
| [[Wizard]] / lizard / gizzard
|-
| 3
| 11\72
| 183.3
| 10/9
| [[Mirkat]]
|-
| 3
| 19\72<br>(5\72)
| 316.7<br>(83.3)
| 6/5<br>(21/20)
| [[Tritikleismic]]
|-
| 4
| 19\72<br>(1\72)
| 316.7<br>(16.7)
| 6/5<br>(105/104)
| [[Quadritikleismic]]
|-
| 8
| 34\72<br>(2\72)
| 566.7<br>(33.3)
| 168/121<br>(55/54)
| [[Octowerck]] / octowerckis
|-
| 8
| 35\72<br>(1\72)
| 583.3<br>(16.7)
| 7/5<br>(100/99)
| [[Octoid]] / octopus
|-
| 9
| 19\72<br>(3\72)
| 316.7<br>(50.0)
| 6/5<br>(36/35)
| [[Ennealimmal]] / ennealimnic
|-
| 9
| 23\72<br>(1\72)
| 383.3<br>(16.7)
| 5/4<br>(105/104)
| [[Enneaportent]]
|-
| 12
| 23\72<br>(1\72)
| 383.3<br>(16.7)
| 5/4<br>(100/99)
| [[Compton]] / comptone
|-
| 18
| 19\72<br>(1\72)
| 316.7<br>(16.7)
| 6/5<br>(105/104)
| [[Hemiennealimmal]]
|-
| 24
| 23\72<br>(1\72)
| 383.3<br>(16.7)
| 5/4<br>(105/104)
| [[Hours]]
|-
| 36
| 23\72<br>(1\72)
| 383.3<br>(16.7)
| 5/4<br>(81/80)
| [[Gamelstearn]]
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct
 
== Scales ==
* [[Smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]]
* [[Blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]]
* [[Keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]]
* [[Genus24255et72|Euler(24255) genus in 72 equal]]
* [[JuneGloom]]
* [[Harry Partch's 43-tone scale]]: 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1
* [[Magnetosphere scale|Magnetosphere]], [[Blackened skies]], [[Lost spirit]]
* [[5- to 10-tone scales in 72edo]]
 
=== Harmonic scale ===
Mode 8 of the harmonic series&mdash;[[overtone scale|harmonics 8 through 16]], octave repeating&mdash;is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).
 
{| class="wikitable"
|-
! Harmonics in "Mode 8":
| 8
|
| 9
|
| 10
|
| 11
|
| 12
|
| 13
|
| 14
|
| 15
|
| 16
|-
! …as JI Ratio from 1/1:
| 1/1
|
| 9/8
|
| 5/4
|
| 11/8
|
| 3/2
|
| 13/8
|
| 7/4
|
| 15/8
|
| 2/1
|-
! …in cents:
| 0
|
| 203.9
|
| 386.3
|
| 551.3
|
| 702.0
|
| 840.5
|
| 968.8
|
| 1088.3
|
| 1200.0
|-
! Nearest degree of 72edo:
| 0
|
| 12
|
| 23
|
| 33
|
| 42
|
| 50
|
| 58
|
| 65
|
| 72
|-
! …in cents:
| 0
|
| 200.0
|
| 383.3
|
| 550.0
|
| 700.0
|
| 833.3
|
| 966.7
|
| 1083.3
|
| 1200.0
|-
! Steps as Freq. Ratio:
|
| 9:8
|
| 10:9
|
| 11:10
|
| 12:11
|
| 13:12
|
| 14:13
|
| 15:14
|
| 16:15
|
|-
! …in cents:
|
| 203.9
|
| 182.4
|
| 165.0
|
| 150.6
|
| 138.6
|
| 128.3
|
| 119.4
|
| 111.7
|
|-
! Nearest degree of 72edo:
|
| 12
|
| 11
|
| 10
|
| 9
|
| 8
|
| 8
|
| 7
|
| 7
|
|-
! …in cents:
|
| 200.0
|
| 183.3
|
| 166.7
|
| 150.0
|
| 133.3
|
| 133.3
|
| 116.7
|
| 116.7
|
|}
 
== Instruments ==
If one can get six 12edo instruments tuned a twelfth-tone apart, it is possible to use these instruments in combination to play the full gamut of 72edo (see Music).
 
One can also use a skip fretting system:
* [[Skip fretting system 72 2 27]]
 
Alternatively, an appropriately mapped keyboard of sufficient size is usable for playing 72edo:
* [[Lumatone mapping for 72edo]]
 
== Music ==
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/VwVp3RVao_k ''microtonal improvisation in 72edo''] (2025)
 
; [[Ambient Esoterica]]
* [https://www.youtube.com/watch?v=seWcDAoQjxY ''Goetic Synchronities''] (2023)
* [https://www.youtube.com/watch?v=CrcdM1e2b6Q ''Rainy Day Generative Pillow''] (2024)
 
; [[Jake Freivald]]
* [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3 ''Lazy Sunday'']{{dead link}} in the [[lazysunday]] scale
 
{{Wikipedia|In vain (Haas)}}
; [[Georg Friedrich Haas]]
* [https://www.youtube.com/watch?v=ix4yA-c-Pi8 ''Blumenstück''] (2000)
* [https://youtu.be/cmX-h7_us7A ''in vain''] (2000) ([https://www.universaledition.com/georg-friedrich-haas-278/works/in-vain-7566 score])
 
; [[Claudi Meneghin]]
* [http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3 ''Twinkle canon – 72 edo'']{{dead link}}
* [https://www.youtube.com/watch?v=zR0NDgh4944 ''The Miracle Canon'', 3-in-1 on a Ground]
* [https://www.youtube.com/watch?v=w6Bckog1eOM ''Sicilienne in Miracle'']
* [https://www.youtube.com/watch?v=QKeZLtFHfNU ''Arietta with 5 Variations'', for Organ] (2024)
 
; [[Prent Rodgers]]
* [http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 ''June Gloom #9'']{{dead link}}
 
; [[Gene Ward Smith]]
* [https://www.archive.org/details/Kotekant ''Kotekant''] [https://www.archive.org/download/Kotekant/kotekant.mp3 play] (2010)
 
;[[Ivan Wyschnegradsky]]
* [https://www.youtube.com/watch?v=RCcJHCkYQ6U Arc-en-ciel, for 6 pianos in twelfth tones, Op. 37] (1956)
 
; [[James Tenney]]
* [https://www.youtube.com/watch?v=jGsxqU1PhZs&list=OLAK5uy_mKyMEMZW7noeLncJnu-JT65go8w7403DA ''Changes for Six Harps'']
 
; [[Xeno Ov Eleas]]
* [https://www.youtube.com/watch?v=cx7I0NWem5w ''Χenomorphic Ghost Storm''] (2022)
 
== External links ==
* [http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo]
* [http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music
* [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list
* [https://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo]
* [http://tonalsoft.com/enc/number/72edo.aspx 72-ed2 / 72-edo / 72-ET / 72-tone equal-temperament] on [[Tonalsoft Encyclopedia]]
 
[[Category:Listen]]
[[Category:Compton]]
[[Category:Marvel]]
[[Category:Miracle]]
[[Category:Prodigy]]
[[Category:Wizard]]