|
|
Line 1: |
Line 1: |
| {{Infobox MOS
| | '''Angel''' is a name* proposed by Mason Green for the temperament that tempers out 81:80 (thus, it is a meantone system), and has a period that is a flattened 3:2, four of which make a pentave (5:1), while its generator is an octave. This temperament is very closely related to quarter-comma meantone (which was the standard for most Western classical music); the key difference is that meantone has a period of an octave and a fifth as a generator, whereas the roles of the fifth and octave are reversed in angel. (Due to the period being a fifth, setting the generator to an octave is equivalent to using a perfect fourth or whole tone as the generator instead). |
| | Name = Angel
| |
| | Equave = 3/2
| |
| | nLargeSteps = 3
| |
| | nSmallSteps = 1
| |
| | Equalized = 2
| |
| | Paucitonic = 1
| |
| | Pattern = LLLs
| |
| }}'''Angel''' is a name* proposed by Mason Green for the temperament that tempers out 81:80 (thus, it is a meantone system), and has a period that is a flattened 3:2, four of which make a pentave (5:1), while its generator is an octave. This temperament is very closely related to quarter-comma meantone (which was the standard for most Western classical music); the key difference is that meantone has a period of an octave and a fifth as a generator, whereas the roles of the fifth and octave are reversed in angel. (Due to the period being a fifth, setting the generator to an octave is equivalent to using a perfect fourth or whole tone as the generator instead).
| |
|
| |
|
| If the pentaves are required to be exactly 5:1, then the fifths will be exactly the same size as the fifths of quarter-comma meantone (namely, the fourth root of five), but the octaves will be slightly flat (by less than half a cent). On the other hand, if the octaves are made perfect (making this a [[31edo|31edo]] temperament), the pentaves will be slightly sharp. Both options are perceptually very close to one another. | | If the pentaves are required to be exactly 5:1, then the fifths will be exactly the same size as the fifths of quarter-comma meantone (namely, the fourth root of five), but the octaves will be slightly flat (by less than half a cent). On the other hand, if the octaves are made perfect (making this a [[31edo|31edo]] temperament), the pentaves will be slightly sharp. Both options are perceptually very close to one another. |
Line 19: |
Line 11: |
| Straight-fretted angel guitars would be a possibility; such guitars would have unequally spaced frets and would need to be tuned in [https://en.wikipedia.org/wiki/All_fifths_tuning all-fifths], since the period is a fifth. | | Straight-fretted angel guitars would be a possibility; such guitars would have unequally spaced frets and would need to be tuned in [https://en.wikipedia.org/wiki/All_fifths_tuning all-fifths], since the period is a fifth. |
|
| |
|
| The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).
| |
|
| |
| In the Angel scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords.
| |
|
| |
| [[Basic]] angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]].
| |
| ==Notation==
| |
| There are 3 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate diatonic scales as repeating at the double or triple sesquitave (major ninth or thirteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s] or a major thirteenth which is the Dorian mode of Bijou[9L 3s]. Since there are exactly 8 naturals in double sesquitave notation and 12 in triple sesquitave notation, letters A-H (FGABHCDEF) or dozenal digits (0123456789XE0 or D1234567FGACD with flats written C molle) may be used.
| |
| {| class="wikitable"
| |
| |+
| |
| Cents
| |
| ! colspan="3" |Notation
| |
| !Supersoft
| |
| !Soft
| |
| !Semisoft
| |
| !Basic
| |
| !Semihard
| |
| !Hard
| |
| !Superhard
| |
| |-
| |
| !Angel
| |
| !Napoli
| |
| !Bijou
| |
| !~15edf
| |
| !~11edf
| |
| !~18edf
| |
| !~7edf
| |
| !~17edf
| |
| !~10edf
| |
| !~13edf
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |0#, D#
| |
| |1\15
| |
| 46.153…
| |
| |1\11
| |
| 63.157…
| |
| |2\18
| |
| 77.419…
| |
| | rowspan="2" |1\7
| |
| 100
| |
| |3\17
| |
| 124.137…
| |
| |2\10
| |
| 141.176…
| |
| |3\13
| |
| 163.{{Overline|63}}
| |
| |-
| |
| |Reb, Lab
| |
| |Gb
| |
| |1b, 1c
| |
| |3\15
| |
| 138.461…
| |
| |2\11
| |
| 126.315…
| |
| |3\18
| |
| 116.129…
| |
| |2\17
| |
| 82.758…
| |
| |1\10
| |
| 70.588…
| |
| |1\13
| |
| 54.{{Overline|54}}
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''1'''
| |
| |'''4\15'''
| |
| '''184.615…'''
| |
| |'''3\11'''
| |
| '''189.473…'''
| |
| |'''5\18'''
| |
| '''193.548…'''
| |
| |'''2\7'''
| |
| '''200'''
| |
| |'''5\17'''
| |
| '''206.896…'''
| |
| |'''3\10'''
| |
| '''211.764…'''
| |
| |'''4\13'''
| |
| '''218.{{Overline|18}}'''
| |
| |-
| |
| |Re#, La#
| |
| |G#
| |
| |1#
| |
| |5\15
| |
| 230.769…
| |
| |4\11
| |
| 252.631…
| |
| |7\18
| |
| 270.967…
| |
| | rowspan="2" |3\7
| |
| 300
| |
| |8\17
| |
| 331.034…
| |
| |5\10
| |
| 352.941…
| |
| |7\13
| |
| 381.{{Overline|81}}
| |
| |-
| |
| |Mib, Sib
| |
| |Ab
| |
| |2b, 2c
| |
| |7\15
| |
| 323.076…
| |
| |5\11
| |
| 315.789…
| |
| |8\18
| |
| 309.677…
| |
| |7\17
| |
| 289.655…
| |
| |4\10
| |
| 282.352…
| |
| |5\13
| |
| 272.{{Overline|72}}
| |
| |-
| |
| |Mi, Si
| |
| |A
| |
| |2
| |
| |8\15
| |
| 369.230…
| |
| |6\11
| |
| 378.947…
| |
| |10\18
| |
| 387.096…
| |
| |4\7
| |
| 400
| |
| |10\17
| |
| 413.793…
| |
| |6\10
| |
| 423.529…
| |
| |8\13
| |
| 436.{{Overline|36}}
| |
| |-
| |
| |Mi#, Si#
| |
| |A#
| |
| |2#
| |
| |9\15
| |
| 415.384…
| |
| | rowspan="2" |7\11
| |
| 442.105…
| |
| |12\18
| |
| 464.516…
| |
| |5\7
| |
| 500
| |
| |13\17
| |
| 537.931…
| |
| |8\10
| |
| 564.705…
| |
| |11\13
| |
| 600
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |3bb, 3cc
| |
| |10\15
| |
| 461.538…
| |
| |11\18
| |
| 425.806…
| |
| |4\7
| |
| 400
| |
| |9\17
| |
| 372.413…
| |
| |5\10
| |
| 352.941…
| |
| |6\13
| |
| 327.{{Overline|27}}
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |'''3b, 3c'''
| |
| |'''11\15'''
| |
| '''507.692…'''
| |
| |'''8\11'''
| |
| '''505.263…'''
| |
| |'''13\18'''
| |
| '''503.225…'''
| |
| |'''5\7'''
| |
| '''500'''
| |
| |'''12\17'''
| |
| '''496.551…'''
| |
| |'''7\10'''
| |
| '''494.117…'''
| |
| |'''9\13'''
| |
| '''490.{{Overline|90}}'''
| |
| |-
| |
| |Fa#, Do#
| |
| |B
| |
| |3
| |
| |12\15
| |
| 553.846…
| |
| |9\11
| |
| 568.421…
| |
| |15\18
| |
| 580.645…
| |
| |6\7
| |
| 600
| |
| |15\17
| |
| 620.689…
| |
| |9\10
| |
| 635.294…
| |
| |12\13
| |
| 654.{{Overline|54}}
| |
| |-
| |
| |Fax, Dox
| |
| |B#
| |
| |3#
| |
| |13\15
| |
| 600
| |
| | rowspan="2" |10\11
| |
| 631.578…
| |
| |17\18
| |
| 658.064…
| |
| |7\7
| |
| 700
| |
| |18\17
| |
| 744.827…
| |
| |11\10
| |
| 776.470…
| |
| |15\13
| |
| 818.{{Overline|18}}
| |
| |-
| |
| |Dob, Solb
| |
| |Hb
| |
| |4b, 4c
| |
| |14\15
| |
| 646.153…
| |
| |16\18
| |
| 619.354…
| |
| |6\7
| |
| 600
| |
| |14\17
| |
| 579.310…
| |
| |8\10
| |
| 564.705…
| |
| |10\13
| |
| 545.{{Overline|45}}
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !4
| |
| !'''15\15'''
| |
| '''692.307…'''
| |
| !'''11\11'''
| |
| '''694.736…'''
| |
| !'''18\18'''
| |
| '''696.774…'''
| |
| !'''7\7'''
| |
| '''700'''
| |
| !'''17\17'''
| |
| '''703.448…'''
| |
| !'''10\10'''
| |
| '''705.882…'''
| |
| !'''13\13'''
| |
| '''709.'''{{Overline|09}}
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |4#
| |
| |16\15
| |
| 738.461…
| |
| |12\11
| |
| 757.894…
| |
| |20\18
| |
| 774.193…
| |
| | rowspan="2" |8\8
| |
| 800
| |
| |20\17
| |
| 827.586…
| |
| |12\10
| |
| 847.058…
| |
| |16\13
| |
| 872.{{Overline|72}}
| |
| |-
| |
| |Reb, Lab
| |
| |Cb
| |
| |5b, 5c
| |
| |18\15
| |
| 830.769…
| |
| |13\11
| |
| 821.052…
| |
| |21\18
| |
| 812.903…
| |
| |19\17
| |
| 786.206…
| |
| |11\10
| |
| 776.470…
| |
| |14\13
| |
| 763.{{Overline|63}}
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C'''
| |
| |'''5'''
| |
| |'''19\18'''
| |
| '''876.923…'''
| |
| |'''14\11'''
| |
| '''884.210…'''
| |
| |'''23\18'''
| |
| '''890.322…'''
| |
| |'''9\5'''
| |
| '''900'''
| |
| |'''22\17'''
| |
| '''910.344…'''
| |
| |'''13\10'''
| |
| '''917.647…'''
| |
| |'''17\13'''
| |
| '''927.{{Overline|27}}'''
| |
| |-
| |
| |Re#, La#
| |
| |C#
| |
| |5#
| |
| |20\15
| |
| 923.076…
| |
| |15\11
| |
| 947.368…
| |
| |25\18
| |
| 967.741…
| |
| | rowspan="2" |10\7
| |
| 1000
| |
| |25\17
| |
| 1034.482…
| |
| |15\10
| |
| 1058.823…
| |
| |20\13
| |
| 1090.{{Overline|90}}
| |
| |-
| |
| |Mib, Sib
| |
| |Db
| |
| |6b, 6c
| |
| |22\15
| |
| 1015.384…
| |
| |16\11
| |
| 1010.526…
| |
| |26\18
| |
| 1006.451…
| |
| |24\17
| |
| 993.103…
| |
| |14\10
| |
| 988.235…
| |
| |18\13
| |
| 981.{{Overline|81}}
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |6
| |
| |23\15
| |
| 1061.538…
| |
| |17\11
| |
| 1073.684…
| |
| |28\18
| |
| 1083.870…
| |
| |11\7
| |
| 1100
| |
| |27\17
| |
| 1117.241…
| |
| |16\10
| |
| 1129.411…
| |
| |21\9
| |
| 1145.{{Overline|45}}
| |
| |-
| |
| |Mi#, Si#
| |
| |D#
| |
| |6#
| |
| |24\15
| |
| 1107.692…
| |
| | rowspan="2" |18\11
| |
| 1136.842…
| |
| |30\18
| |
| 1161.290…
| |
| |12\7
| |
| 1200
| |
| |30\17
| |
| 1241.379…
| |
| |18\10
| |
| 1270.588…
| |
| |24\13
| |
| 1309.{{Overline|09}}
| |
| |-
| |
| |Fab, Dob
| |
| |Ebb
| |
| |7bb, 7cc
| |
| |25\15
| |
| 1153.846…
| |
| |29\18
| |
|
| |
| 1122.580…
| |
| |11\7
| |
| 1100
| |
| |26\17
| |
| 1075.862…
| |
| |15\10
| |
| 1058.823…
| |
| |19\13
| |
| 1036.{{Overline|36}}
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''7b, 7c'''
| |
| |'''26\15'''
| |
| '''1200'''
| |
| |'''19\11'''
| |
| '''1200'''
| |
| |'''31\18'''
| |
| '''1200'''
| |
| |'''12\7'''
| |
| '''1200'''
| |
| |'''29\17'''
| |
| '''1200'''
| |
| |'''17\10'''
| |
| '''1200'''
| |
| |'''22\13'''
| |
| '''1200'''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |7
| |
| |27\15
| |
| 1246.153…
| |
| |20\11
| |
| 1263.157…
| |
| |33\18
| |
| 1277.419…
| |
| |13\7
| |
| 1300
| |
| |32\17
| |
| 1324.137…
| |
| |19\10
| |
| 1341.176…
| |
| |25\13
| |
| 1363.{{Overline|63}}
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |7#
| |
| |28\15
| |
| 1292.307…
| |
| | rowspan="2" |21\11
| |
| 1326.315…
| |
| |35\18
| |
| 1354.838…
| |
| |14\7
| |
| 1400
| |
| |35\17
| |
| 1448.275…
| |
| |21\10
| |
| 1482.352…
| |
| |28\13
| |
| 1527.{{Overline|27}}
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |8b, Fc
| |
| |29\15
| |
| 1338.461…
| |
| |34\18
| |
| 1316.129…
| |
| |13\7
| |
| 1300
| |
| |31\17
| |
| 1282.758…
| |
| |18\10
| |
| 1270.588…
| |
| |23\18
| |
| 1254.{{Overline|54}}
| |
| |-
| |
| !Do, Sol
| |
| !F
| |
| !8, F
| |
| !30\15
| |
| 1384.615…
| |
| !22\11
| |
| 1389.473…
| |
| !36\18
| |
| 1393.548…
| |
| !14\7
| |
| 1400
| |
| !34\17
| |
| 1406.896…
| |
| !20\10
| |
| 1411.764…
| |
| !26\9
| |
| 1418.{{Overline|18}}
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |8#, F#
| |
| |31\15
| |
| 1430.769…
| |
| |23\11
| |
| 1452.631…
| |
| |38\18
| |
| 1470.967…
| |
| | rowspan="2" |15\7
| |
| 1500
| |
| |37\17
| |
| 1531.034…
| |
| |22\10
| |
| 1552.941…
| |
| |29\13
| |
| 1581.{{Overline|81}}
| |
| |-
| |
| |Reb, Lab
| |
| |Gb
| |
| |9b, Gc
| |
| |33\15
| |
| 1523.076…
| |
| |24\11
| |
| 1515.789…
| |
| |39\18
| |
| 1509.677…
| |
| |36\17
| |
| 1489.655…
| |
| |21\10
| |
| 1482.352…
| |
| |27\13
| |
| 1472.{{Overline|72}}
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''9, G'''
| |
| |'''34\15'''
| |
| '''1569.230…'''
| |
| |'''25\11'''
| |
| '''1578.947…'''
| |
| |'''41\18'''
| |
| '''1587.096…'''
| |
| |'''16\7'''
| |
| '''1600'''
| |
| |'''39\17'''
| |
| '''1613.793…'''
| |
| |'''23\10'''
| |
| '''1623.529…'''
| |
| |'''30\13'''
| |
| '''1636.{{Overline|36}}'''
| |
| |-
| |
| |Re#, La#
| |
| |G#
| |
| |9#, G#
| |
| |35\15
| |
| 1615.384…
| |
| |26\11
| |
| 1642.105…
| |
| |43\18
| |
| 1664.516…
| |
| | rowspan="2" |17\7
| |
| 1700
| |
| |42\17
| |
| 1737.931…
| |
| |25\10
| |
| 1764.705…
| |
| |33\13
| |
| 1800
| |
| |-
| |
| |Mib, Sib
| |
| |Ab
| |
| |Xb, Ac
| |
| |37\15
| |
| 1707.692…
| |
| |27\11
| |
| 1705.263…
| |
| |44\18
| |
| 1703.225…
| |
| |41\17
| |
| 1696.551…
| |
| |24\10
| |
| 1694.117…
| |
| |31\13
| |
| 1690.{{Overline|90}}
| |
| |-
| |
| |Mi, Si
| |
| |A
| |
| |X, A
| |
| |38\15
| |
| 1753.846…
| |
| |28\11
| |
| 1768.421…
| |
| |46\18
| |
| 1780.645…
| |
| |18\7
| |
| 1800
| |
| |44\17
| |
| 1820.689…
| |
| |26\10
| |
| 1835.294…
| |
| |34\13
| |
| 1854.{{Overline|54}}
| |
| |-
| |
| |Mi#, Si#
| |
| |A#
| |
| |X#, A#
| |
| |39\15
| |
| 1800
| |
| | rowspan="2" |29\11
| |
| 1831.578…
| |
| |48\18
| |
| 1858.064…
| |
| |19\7
| |
| 1900
| |
| |47\17
| |
| 1944.827…
| |
| |28\10
| |
| 1976.470…
| |
| |37\13
| |
| 2018.{{Overline|18}}
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |Ebb, Ccc
| |
| |40\15
| |
| 1846.153…
| |
| |47\18
| |
|
| |
| 1819.354…
| |
| |18\7
| |
| 1800
| |
| |43\17
| |
| 1779.310…
| |
| |25\10
| |
| 1764.705…
| |
| |32\13
| |
| 1745.4̄5̄
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |Eb, Cc
| |
| |'''41\15'''
| |
| '''1892.307…'''
| |
| |'''30\11'''
| |
| '''1894.736…'''
| |
| |'''49\18'''
| |
| '''1896.774…'''
| |
| |'''19\7'''
| |
| '''1900'''
| |
| |'''46\17'''
| |
| '''1903.448…'''
| |
| |'''27\10'''
| |
| '''1905.882…'''
| |
| |'''35\13'''
| |
| '''1909.{{Overline|09}}'''
| |
| |-
| |
| |Fa#, Do#
| |
| |B
| |
| |E, C
| |
| |42\15
| |
| 1938.461…
| |
| |31\11
| |
| 1957.894…
| |
| |51\18
| |
| 1974.193…
| |
| |20\7
| |
| 2000
| |
| |49\17
| |
| 2027.586…
| |
| |29\10
| |
| 1976.470…
| |
| |38\13
| |
| 2072.{{Overline|72}}
| |
| |-
| |
| |Fax, Dox
| |
| |B#
| |
| |Ex, Cx
| |
| |43\15
| |
| 1984.615…
| |
| | rowspan="2" |32\11
| |
| 2021.052…
| |
| |53\18
| |
| 2051.612…
| |
| |21\7
| |
| 2100
| |
| |52\17
| |
| 2151.724…
| |
| |31\10
| |
| 2188.235…
| |
| |41\13
| |
| 2236.{{Overline|36}}
| |
| |-
| |
| |Dob, Solb
| |
| |Hb
| |
| |0b, Dc
| |
| |44\15
| |
| 2030.769…
| |
| |52\18
| |
| 2012.903…
| |
| |20\7
| |
| 2000
| |
| |48\17
| |
| 1986.206…
| |
| |28\10
| |
| 1967.470…
| |
| |36\13
| |
| 1963.{{Overline|63}}
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !0, D
| |
| !45\15
| |
| 2076.923…
| |
| !33\11
| |
| 2084.210…
| |
| !54\18
| |
| 2090.322…
| |
| !21\7
| |
| 2100
| |
| !51\17
| |
| 2110.344…
| |
| !30\10
| |
| 2117.647…
| |
| !39\13
| |
| 2127.{{Overline|27}}
| |
| |}
| |
| {| class="wikitable"
| |
| |+Relative cents
| |
| ! colspan="3" |Notation
| |
| !Supersoft
| |
| !Soft
| |
| !Semisoft
| |
| !Basic
| |
| !Semihard
| |
| !Hard
| |
| !Superhard
| |
| |-
| |
| !Angel
| |
| !Napoli
| |
| !Bijou
| |
| !~15edf
| |
| !~11edf
| |
| !~18edf
| |
| !~7edf
| |
| !~17edf
| |
| !~10edf
| |
| !~13edf
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |0#, D#
| |
| |1\15
| |
| ''46.{{Overline|6}}''
| |
| |1\11
| |
| ''63.{{Overline|63}}''
| |
| |2\18
| |
| ''77.{{Overline|7}}''
| |
| | rowspan="2" |1\7
| |
| ''100''
| |
| |3\17
| |
| ''123.529…''
| |
| |2\10
| |
| ''140''
| |
| |3\13
| |
| ''161.538…''
| |
| |-
| |
| |Reb, Lab
| |
| |Gb
| |
| |1b, 1c
| |
| |3\15
| |
| ''140''
| |
| |2\11
| |
| ''127.{{Overline|27}}''
| |
| |3\18
| |
| ''116.{{Overline|6}}''
| |
| |2\17
| |
| ''82.352…''
| |
| |1\10
| |
| ''70''
| |
| |1\13
| |
| ''53.846…''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''1'''
| |
| |'''4\15'''
| |
| '''''186.{{Overline|6}}'''''
| |
| |'''3\11'''
| |
| '''''190.{{Overline|90}}'''''
| |
| |'''5\18'''
| |
| '''''194.{{Overline|4}}'''''
| |
| |'''2\7'''
| |
| '''''200'''''
| |
| |'''5\17'''
| |
| '''''205.882…'''''
| |
| |'''3\10'''
| |
| '''''210'''''
| |
| |'''4\13'''
| |
| '''''215.384…'''''
| |
| |-
| |
| |Re#, La#
| |
| |G#
| |
| |1#
| |
| |5\15
| |
| ''233.{{Overline|3}}''
| |
| |4\11
| |
| ''254.{{Overline|54}}''
| |
| |7\18
| |
| ''272.2̄''
| |
| | rowspan="2" |3\7
| |
| ''300''
| |
| |8\17
| |
| ''329.411…''
| |
| |5\10
| |
| ''350''
| |
| |7\13
| |
| ''376.923…''
| |
| |-
| |
| |Mib, Sib
| |
| |Ab
| |
| |2b, 2c
| |
| |7\15
| |
| ''326.{{Overline|6}}''
| |
| |5\11
| |
| ''318.{{Overline|18}}''
| |
| |8\18
| |
| ''311.1̄''
| |
| |7\17
| |
| ''288.235…''
| |
| |4\10
| |
| ''280''
| |
| |5\13
| |
| ''269.230…''
| |
| |-
| |
| |Mi, Si
| |
| |A
| |
| |2
| |
| |8\15
| |
| ''373.{{Overline|3}}''
| |
| |6\11
| |
| ''381.{{Overline|81}}''
| |
| |10\18
| |
| ''388.{{Overline|8}}''
| |
| |4\7
| |
| ''400''
| |
| |10\17
| |
| ''411.764…''
| |
| |6\10
| |
| ''420''
| |
| |8\13
| |
| ''430.769…''
| |
| |-
| |
| |Mi#, Si#
| |
| |A#
| |
| |2#
| |
| |9\15
| |
| ''420''
| |
| | rowspan="2" |7\11
| |
| ''445.{{Overline|45}}''
| |
| |12\18
| |
| ''466.{{Overline|6}}''
| |
| |5\7
| |
| ''500''
| |
| |13\17
| |
| ''535.294…''
| |
| |8\10
| |
| ''560''
| |
| |11\13
| |
| ''592.307…''
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |3bb, 3cc
| |
| |10\15
| |
| ''466.{{Overline|6}}''
| |
| |11\18
| |
|
| |
| ''427.{{Overline|7}}''
| |
| |4\7
| |
| ''400''
| |
| |9\17
| |
| ''370.588…''
| |
| |5\10
| |
| ''350''
| |
| |6\13
| |
| ''323.076.…''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |'''3b, 3c'''
| |
| |'''11\15'''
| |
| '''''513.{{Overline|3}}'''''
| |
| |'''8\11'''
| |
| '''''509.{{Overline|09}}'''''
| |
| |'''13\18'''
| |
| '''''505.{{Overline|5}}'''''
| |
| |'''5\7'''
| |
| '''''500'''''
| |
| |'''12\17'''
| |
| '''''494.117…'''''
| |
| |'''7\10'''
| |
| '''''490'''''
| |
| |'''9\13'''
| |
| '''''484.615…'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |B
| |
| |3
| |
| |12\15
| |
| ''560''
| |
| |9\11
| |
| ''572.{{Overline|72}}''
| |
| |15\18
| |
| ''583.{{Overline|3}}''
| |
| |6\7
| |
| ''600''
| |
| |15\17
| |
| ''617.647…''
| |
| |9\10
| |
| ''630''
| |
| |12\13
| |
| ''646.153…''
| |
| |-
| |
| |Fax, Dox
| |
| |B#
| |
| |3#
| |
| |13\15
| |
| ''606.{{Overline|6}}''
| |
| | rowspan="2" |10\11
| |
| ''636.{{Overline|36}}''
| |
| |17\18
| |
| ''661.{{Overline|6}}''
| |
| |7\7
| |
| ''700''
| |
| |18\17
| |
| ''741.176…''
| |
| |11\10
| |
| ''770''
| |
| |15\13
| |
| ''807.692…''
| |
| |-
| |
| |Dob, Solb
| |
| |Hb
| |
| |4b, 4c
| |
| |14\15
| |
| ''653.{{Overline|3}}''
| |
| |16\18
| |
| ''622.{{Overline|2}}''
| |
| |6\7
| |
| ''600''
| |
| |14\17
| |
| ''576.470…''
| |
| |8\10
| |
| ''560''
| |
| |10\13
| |
| ''538.461…''
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !4
| |
| ! colspan="7" |''700''
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |4#
| |
| |16\15
| |
| ''746.{{Overline|6}}''
| |
| |12\11
| |
| ''763.{{Overline|63}}''
| |
| |20\18
| |
| ''777.{{Overline|7}}''
| |
| | rowspan="2" |8\7
| |
| ''800''
| |
| |20\17
| |
| ''823.529…''
| |
| |12\10
| |
| ''840''
| |
| |16\13
| |
| ''861.538…''
| |
| |-
| |
| |Reb, Lab
| |
| |Cb
| |
| |5b, 5c
| |
| |18\15
| |
| ''840''
| |
| |13\11
| |
| ''827.{{Overline|27}}''
| |
| |21\18
| |
| ''816.{{Overline|6}}''
| |
| |19\17
| |
| ''782.352…''
| |
| |11\10
| |
| ''770''
| |
| |14\13
| |
| ''753.846…''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C'''
| |
| |'''5'''
| |
| |'''19\15'''
| |
| '''''886.{{Overline|6}}'''''
| |
| |'''14\11'''
| |
| '''''890.{{Overline|90}}'''''
| |
| |'''23\18'''
| |
| '''''894.{{Overline|4}}'''''
| |
| |'''9\7'''
| |
| '''''900'''''
| |
| |'''22\17'''
| |
| '''''905.882…'''''
| |
| |'''13\10'''
| |
| '''''910'''''
| |
| |'''17\13'''
| |
| '''''915.384…'''''
| |
| |-
| |
| |Re#, La#
| |
| |C#
| |
| |5#
| |
| |20\15
| |
| ''933.{{Overline|3}}''
| |
| |15\11
| |
| ''954.{{Overline|54}}''
| |
| |25\18
| |
| ''972.2̄''
| |
| | rowspan="2" |10\7
| |
| ''1000''
| |
| |25\17
| |
| ''1029.411…''
| |
| |15\10
| |
| ''1050''
| |
| |20\13
| |
| ''1076.923…''
| |
| |-
| |
| |Mib, Sib
| |
| |Db
| |
| |6b, 6c
| |
| |22\15
| |
| ''1026.{{Overline|6}}''
| |
| |16\11
| |
| ''1018.{{Overline|18}}''
| |
| |26\18
| |
| ''1011.{{Overline|1}}''
| |
| |24\17
| |
| ''988.235…''
| |
| |14\10
| |
| ''980''
| |
| |18\13
| |
| ''969.230…''
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |6
| |
| |23\15
| |
| ''1073.{{Overline|3}}''
| |
| |17\11
| |
| ''1081.{{Overline|81}}''
| |
| |28\18
| |
| ''1088.{{Overline|8}}''
| |
| |11\7
| |
| ''1100''
| |
| |27\17
| |
| ''1111.764…''
| |
| |16\10
| |
| ''1120''
| |
| |21\13
| |
| ''1130.769…''
| |
| |-
| |
| |Mi#, Si#
| |
| |D#
| |
| |6#
| |
| |24\15
| |
| ''1120''
| |
| | rowspan="2" |18\11
| |
| ''1145.{{Overline|45}}''
| |
| |30\18
| |
| ''1166.{{Overline|6}}''
| |
| |12\7
| |
| ''1200''
| |
| |30\17
| |
| ''1235.294…''
| |
| |18\10
| |
| ''1260''
| |
| |24\13
| |
| ''1292.307…''
| |
| |-
| |
| |Fab, Dob
| |
| |Ebb
| |
| |7bb, 7cc
| |
| |25\15
| |
| ''1166.{{Overline|6}}''
| |
| |29\18
| |
|
| |
| ''1127.{{Overline|7}}''
| |
| |11\7
| |
| ''1100''
| |
| |26\17
| |
| ''1070.588…''
| |
| |15\10
| |
| ''1050''
| |
| |19\13
| |
| ''1023.076…''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''7b, 7c'''
| |
| |'''26\15'''
| |
| '''''1213.{{Overline|3}}'''''
| |
| |'''19\11'''
| |
| '''''1209.{{Overline|09}}'''''
| |
| |'''31\18'''
| |
| '''''1205.{{Overline|5}}'''''
| |
| |'''12\7'''
| |
| '''''1200'''''
| |
| |'''29\17'''
| |
| '''''1194.117…'''''
| |
| |'''17\10'''
| |
| '''''1190'''''
| |
| |'''22\13'''
| |
| '''''1184.615…'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |7
| |
| |27\15
| |
| ''1260''
| |
| |20\11
| |
| ''1272.{{Overline|72}}''
| |
| |33\18
| |
| ''1283.{{Overline|3}}''
| |
| |13\7
| |
| ''1300''
| |
| |32\17
| |
| ''1317.647…''
| |
| |19\10
| |
| ''1330''
| |
| |25\13
| |
| ''1346.153…''
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |7#
| |
| |28\15
| |
| ''1306.{{Overline|6}}''
| |
| | rowspan="2" |21\11
| |
| ''1336.{{Overline|36}}''
| |
| |35\18
| |
| ''1361.{{Overline|1}}''
| |
| |14\7
| |
| ''1400''
| |
| |35\17
| |
| ''1441.176…''
| |
| |21\10
| |
| ''1470''
| |
| |28\13
| |
| ''1507.692…''
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |8b, Fc
| |
| |29\15
| |
| ''1333.{{Overline|3}}''
| |
| |34\18
| |
| ''1322.{{Overline|2}}''
| |
| |13\7
| |
| ''1300''
| |
| |31\17
| |
| ''1276.470…''
| |
| |18\10
| |
| ''1260''
| |
| |23\13
| |
| ''1238.461…''
| |
| |-
| |
| !Do, Sol
| |
| !F
| |
| !8, F
| |
| ! colspan="7" |''1400''
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |8#, F#
| |
| |31\15
| |
| ''1446.{{Overline|6}}''
| |
| |23\11
| |
| ''1463.{{Overline|63}}''
| |
| |38\18
| |
| ''1477.7̄''
| |
| | rowspan="2" |15\7
| |
| ''1500''
| |
| |37\17
| |
| ''1523.529…''
| |
| |22\10
| |
| ''1540''
| |
| |29\13
| |
| ''1561.538…''
| |
| |-
| |
| |Reb, Lab
| |
| |Gb
| |
| |9b, Gc
| |
| |33\15
| |
| ''1540''
| |
| |24\11
| |
| ''1527.{{Overline|27}}''
| |
| |39\18
| |
| ''1516.{{Overline|6}}''
| |
| |36\17
| |
| ''1482.352…''
| |
| |21\10
| |
| ''1470''
| |
| |27\13
| |
| ''1453.846…''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''9, G'''
| |
| |'''34\15'''
| |
| '''''1586.{{Overline|6}}'''''
| |
| |'''25\11'''
| |
| '''''1590.{{Overline|90}}'''''
| |
| |'''41\18'''
| |
| '''''1594.{{Overline|4}}'''''
| |
| |'''16\7'''
| |
| '''''1600'''''
| |
| |'''39\17'''
| |
| '''''1605.882…'''''
| |
| |'''23\10'''
| |
| '''''1610'''''
| |
| |'''30\13'''
| |
| '''''1615.384…'''''
| |
| |-
| |
| |Re#, La#
| |
| |G#
| |
| |9#, G#
| |
| |35\15
| |
| ''1633.{{Overline|3}}''
| |
| |26\11
| |
| ''1654.{{Overline|54}}''
| |
| |43\18
| |
| ''1672.{{Overline|2}}''
| |
| | rowspan="2" |17\7
| |
| ''1700''
| |
| |42\17
| |
| ''1729.411…''
| |
| |25\10
| |
| ''1750''
| |
| |33\13
| |
| ''1776.923…''
| |
| |-
| |
| |Mib, Sib
| |
| |Ab
| |
| |Xb, Ac
| |
| |37\15
| |
| ''1726.{{Overline|6}}''
| |
| |27\11
| |
| ''1718.{{Overline|18}}''
| |
| |44\18
| |
| ''1711.{{Overline|1}}''
| |
| |41\17
| |
| ''1688.235…''
| |
| |24\10
| |
| ''1680''
| |
| |31\13
| |
| ''1669.230…''
| |
| |-
| |
| |Mi, Si
| |
| |A
| |
| |X, A
| |
| |38\15
| |
| ''1773.{{Overline|3}}''
| |
| |28\11
| |
| ''1781.{{Overline|81}}''
| |
| |46\18
| |
| ''1788.{{Overline|8}}''
| |
| |18\7
| |
| ''1800''
| |
| |44\17
| |
| ''1811.764…''
| |
| |26\10
| |
| ''1820''
| |
| |34\13
| |
| ''1830.769…''
| |
| |-
| |
| |Mi#, Si#
| |
| |A#
| |
| |X#, A#
| |
| |39\15
| |
| ''1820''
| |
| | rowspan="2" |29\11
| |
| ''1845.{{Overline|45}}''
| |
| |48\18
| |
| ''1866.{{Overline|6}}''
| |
| |19\7
| |
| ''1900''
| |
| |47\17
| |
| ''1935.294…''
| |
| |28\10
| |
| ''1960''
| |
| |37\13
| |
| ''1992.307…''
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |Ebb, Ccc
| |
| |40\15
| |
| ''1866.{{Overline|6}}''
| |
| |47\18
| |
|
| |
| ''1827.{{Overline|7}}''
| |
| |18\7
| |
| ''1800''
| |
| |43\17
| |
| ''1770.588…''
| |
| |25\10
| |
| ''1750''
| |
| |32\13
| |
| ''1723.076…''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |Eb, Cc
| |
| |'''41\15'''
| |
| '''''1913.{{Overline|3}}'''''
| |
| |'''30\11'''
| |
| '''''1909.{{Overline|09}}'''''
| |
| |'''49\18'''
| |
| '''''1905.{{Overline|5}}'''''
| |
| |'''19\7'''
| |
| '''''1900'''''
| |
| |'''46\17'''
| |
| '''''1894.117…'''''
| |
| |'''27\10'''
| |
| '''''1890'''''
| |
| |'''35\13'''
| |
| '''''1884.615…'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |B
| |
| |E, C
| |
| |42\15
| |
| ''1960''
| |
| |31\11
| |
| ''1972.{{Overline|72}}''
| |
| |51\18
| |
| ''1983.{{Overline|3}}''
| |
| |20\7
| |
| ''2000''
| |
| |49\17
| |
| ''2017.647…''
| |
| |29\10
| |
| ''2030''
| |
| |38\13
| |
| ''2046.153…''
| |
| |-
| |
| |Fax, Dox
| |
| |B#
| |
| |Ex, Cx
| |
| |43\15
| |
| ''2006.{{Overline|6}}''
| |
| | rowspan="2" |32\11
| |
| ''2036.''{{Overline|36}}
| |
| |53\18
| |
| ''2061.{{Overline|1}}''
| |
| |21\7
| |
|
| |
| ''2100''
| |
| |52\17
| |
| ''2141.176…''
| |
| |31\10
| |
| ''2170''
| |
| |41\13
| |
| ''2207.692…''
| |
| |-
| |
| |Dob, Solb
| |
| |Hb
| |
| |0b, Dc
| |
| |44\15
| |
| ''2053.{{Overline|3}}''
| |
| |52\18
| |
| ''2022.{{Overline|2}}''
| |
| |20\7
| |
| ''2000''
| |
| |48\17
| |
| ''1976.470…''
| |
| |28\10
| |
| ''1960''
| |
| |''36\13''
| |
| ''1938.615…''
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !0, D
| |
| ! colspan="7" |''2100''
| |
| |}
| |
|
| |
| ==Intervals==
| |
| {| class="wikitable"
| |
| !Generators
| |
| !Sesquitave notation
| |
| !Interval category name
| |
| !Generators
| |
| !Notation of 3/2 inverse
| |
| !Interval category name
| |
| |-
| |
| | colspan="6" |The 4-note MOS has the following intervals (from some root):
| |
| |-
| |
| |0
| |
| |Do, Sol
| |
| |perfect unison
| |
| |0
| |
| |Do, Sol
| |
| |sesquitave (just fifth)
| |
| |-
| |
| |1
| |
| |Fa, Do
| |
| |perfect fourth
| |
| | -1
| |
| |Re, La
| |
| |perfect second
| |
| |-
| |
| |2
| |
| |Mib, Sib
| |
| |minor third
| |
| | -2
| |
| |Mi, Si
| |
| |major third
| |
| |-
| |
| |3
| |
| |Reb, Lab
| |
| |diminished second
| |
| | -3
| |
| |Fa#, Do#
| |
| |augmented fourth
| |
| |-
| |
| | colspan="6" |The chromatic 7-note MOS also has the following intervals (from some root):
| |
| |-
| |
| |4
| |
| |Dob, Solb
| |
| |diminished sesquitave
| |
| | -4
| |
| |Do#, Sol#
| |
| |augmented unison (chroma)
| |
| |-
| |
| |5
| |
| |Fab, Dob
| |
| |diminished fourth
| |
| | -5
| |
| |Re#, La#
| |
| |augmented second
| |
| |-
| |
| |6
| |
| |Mibb, Sibb
| |
| |diminished third
| |
| | -6
| |
| |Mi#, Si#
| |
| |augmented third
| |
| |}
| |
| ==Genchain==
| |
| The generator chain for this scale is as follows:
| |
| {| class="wikitable"
| |
| |Mibb
| |
| Sibb
| |
| |Fab
| |
| Dob
| |
| |Dob
| |
| Solb
| |
| |Reb
| |
| Lab
| |
| |Mib
| |
| Sib
| |
| |Fa
| |
| Do
| |
| |Do
| |
| Sol
| |
| |Re
| |
| La
| |
| |Mi
| |
| Si
| |
| |Fa#
| |
| Do#
| |
| |Do#
| |
| Sol#
| |
| |Re#
| |
| La#
| |
| |Mi#
| |
| Si#
| |
| |-
| |
| |d3
| |
| |d4
| |
| |d6
| |
| |d2
| |
| |m3
| |
| |P4
| |
| |P1
| |
| |P2
| |
| |M3
| |
| |A4
| |
| |A1
| |
| |A2
| |
| |A3
| |
| |}
| |
| ==Modes==
| |
| The mode names are based on the species of fifth:
| |
| {| class="wikitable"
| |
| !Mode
| |
| !Scale
| |
| ![[Modal UDP Notation|UDP]]
| |
| ! colspan="3" |Interval type
| |
| |-
| |
| !name
| |
| !pattern
| |
| !notation
| |
| !2nd
| |
| !3rd
| |
| !4th
| |
| |-
| |
| |Lydian
| |
| |LLLs
| |
| |<nowiki>3|0</nowiki>
| |
| |P
| |
| |M
| |
| |A
| |
| |-
| |
| |Major
| |
| |LLsL
| |
| |<nowiki>2|1</nowiki>
| |
| |P
| |
| |M
| |
| |P
| |
| |-
| |
| |Minor
| |
| |LLsL
| |
| |<nowiki>1|2</nowiki>
| |
| |P
| |
| |m
| |
| |P
| |
| |-
| |
| |Phrygian
| |
| |LsLL
| |
| |<nowiki>0|3</nowiki>
| |
| |d
| |
| |m
| |
| |P
| |
| |}
| |
| ==Temperaments==
| |
| The most basic rank-2 temperament interpretation of diatonic is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> (p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations.
| |
| ==='''Napoli-Meantone'''===
| |
| [[Subgroup]]: 3/2.6/5.8/5
| |
|
| |
| [[Comma]] list: [[81/80]]
| |
|
| |
| [[POL2]] generator: ~9/8 = 192.6406
| |
|
| |
| [[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}]
| |
|
| |
| [[Vals]]: {{val list|~(7edf, 11edf, 18edf)}}
| |
| ==='''Napoli-Superpyth'''===
| |
| [[Subgroup]]: 3/2.7/6.14/9
| |
|
| |
| [[Comma]] list: [[64/63]]
| |
|
| |
| [[POL2]] generator: ~8/7 = 218.6371
| |
|
| |
| [[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}]
| |
|
| |
| [[Vals]]: {{val list|~(7edf, 10edf, 13edf, 16edf)}}
| |
| ====Scale tree====
| |
| The spectrum looks like this:
| |
| {| class="wikitable"
| |
| ! colspan="3" rowspan="2" |Generator
| |
| (bright)
| |
| ! colspan="2" |Cents
| |
| ! rowspan="2" |L
| |
| ! rowspan="2" |s
| |
| ! rowspan="2" |L/s
| |
| ! rowspan="2" |Comments
| |
| |-
| |
| !<u>Normalised</u>
| |
| !''ed7\12''
| |
| |-
| |
| |1\4
| |
| |
| |
| |
| |
| |<u>171.428…</u>
| |
| |''175''
| |
| |1
| |
| |1
| |
| |1.000
| |
| |Equalised
| |
| |-
| |
| |6\23
| |
| |
| |
| |
| |
| |<u>180</u>
| |
| |''182.608…''
| |
| |6
| |
| |5
| |
| |1.200
| |
| |
| |
| |-
| |
| |
| |
| |11\42
| |
| |
| |
| |<u>180.821…</u>
| |
| |''183.{{Overline|3}}''
| |
| |11
| |
| |9
| |
| |1.222
| |
| |
| |
| |-
| |
| |5\19
| |
| |
| |
| |
| |
| |<u>181.{{Overline|81}}</u>
| |
| |''184.210…''
| |
| |5
| |
| |4
| |
| |1.250
| |
| |
| |
| |-
| |
| |
| |
| |14\53
| |
| |
| |
| |<u>182.608…</u>
| |
| |''184.905…''
| |
| |14
| |
| |11
| |
| |1.273
| |
| |
| |
| |-
| |
| |
| |
| |9\34
| |
| |
| |
| |<u>183.050…</u>
| |
| |''185.294…''
| |
| |9
| |
| |7
| |
| |1.286
| |
| |
| |
| |-
| |
| |4\15
| |
| |
| |
| |
| |
| |<u>184.615…</u>
| |
| |''186.6̄''
| |
| |4
| |
| |3
| |
| |1.333
| |
| |
| |
| |-
| |
| |
| |
| |11\41
| |
| |
| |
| |<u>185.915…</u>
| |
| |''187.804…''
| |
| |11
| |
| |8
| |
| |1.375
| |
| |
| |
| |-
| |
| |
| |
| |7\26
| |
| |
| |
| |<u>186.{{Overline|6}}</u>
| |
| |''188.461…''
| |
| |7
| |
| |5
| |
| |1.400
| |
| |
| |
| |-
| |
| |
| |
| |10\37
| |
| |
| |
| |<u>187.5</u>
| |
| |''189.{{Overline|189}}''
| |
| |10
| |
| |7
| |
| |1.429
| |
| |
| |
| |-
| |
| |
| |
| |13\48
| |
| |
| |
| |<u>187.951…</u>
| |
| |''189.58{{Overline|3}}''
| |
| |13
| |
| |9
| |
| |1.444
| |
| |
| |
| |-
| |
| |
| |
| |16\59
| |
| |
| |
| |<u>188.235…</u>
| |
| |''189.830…''
| |
| |16
| |
| |11
| |
| |1.4545
| |
| |
| |
| |-
| |
| |3\11
| |
| |
| |
| |
| |
| |<u>189.473…</u>
| |
| |''190.{{Overline|90}}''
| |
| |3
| |
| |2
| |
| |1.500
| |
| |Napoli-Meantone starts here
| |
| |-
| |
| |
| |
| |17\62
| |
| |
| |
| |<u>190.654…</u>
| |
| |''191.935…''
| |
| |17
| |
| |11
| |
| |1.5455
| |
| |
| |
| |-
| |
| |
| |
| |14\51
| |
| |
| |
| |<u>190.{{Overline|90}}</u>
| |
| |''192.156…''
| |
| |14
| |
| |9
| |
| |1.556
| |
| |
| |
| |-
| |
| |
| |
| |11\40
| |
| |
| |
| |<u>191.304…</u>
| |
| |''192.5''
| |
| |11
| |
| |7
| |
| |1.571
| |
| |
| |
| |-
| |
| |
| |
| |8\29
| |
| |
| |
| |<u>192</u>
| |
| |''193.103…''
| |
| |8
| |
| |5
| |
| |1.600
| |
| |
| |
| |-
| |
| |
| |
| |5\18
| |
| |
| |
| |<u>193.548…</u>
| |
| |''194.{{Overline|4}}''
| |
| |5
| |
| |3
| |
| |1.667
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |12\43
| |
| |<u>194.{{Overline|594}}</u>
| |
| |''195.348…''
| |
| |12
| |
| |7
| |
| |1.714
| |
| |
| |
| |-
| |
| |
| |
| |7\25
| |
| |
| |
| |<u>195.348…</u>
| |
| |''196''
| |
| |7
| |
| |4
| |
| |1.750
| |
| |
| |
| |-
| |
| |
| |
| |9\32
| |
| |
| |
| |<u>196.{{Overline|36}}</u>
| |
| |''196.875''
| |
| |9
| |
| |5
| |
| |1.800
| |
| |
| |
| |-
| |
| |
| |
| |11\39
| |
| |
| |
| |<u>197.014…</u>
| |
| |''197.435…''
| |
| |11
| |
| |6
| |
| |1.833
| |
| |
| |
| |-
| |
| |
| |
| |13\46
| |
| |
| |
| |<u>197.468…</u>
| |
| |''197.826…''
| |
| |13
| |
| |7
| |
| |1.857
| |
| |
| |
| |-
| |
| |
| |
| |15\53
| |
| |
| |
| |<u>197.802…</u>
| |
| |''198.113…''
| |
| |15
| |
| |8
| |
| |1.875
| |
| |
| |
| |-
| |
| |
| |
| |17\60
| |
| |
| |
| |<u>198.058…</u>
| |
| |''198.3̄''
| |
| |17
| |
| |9
| |
| |1.889
| |
| |
| |
| |-
| |
| |
| |
| |19\67
| |
| |
| |
| |<u>198.260…</u>
| |
| |''198.507…''
| |
| |19
| |
| |10
| |
| |1.900
| |
| |
| |
| |-
| |
| |
| |
| |21\74
| |
| |
| |
| |<u>198.425…</u>
| |
| |''198.{{Overline|648}}''
| |
| |21
| |
| |11
| |
| |1.909
| |
| |
| |
| |-
| |
| |
| |
| |23\81
| |
| |
| |
| |<u>198.561…</u>
| |
| |''198.765…''
| |
| |23
| |
| |12
| |
| |1.917
| |
| |
| |
| |-
| |
| |
| |
| |25\88
| |
| |
| |
| |<u>198.675…</u>
| |
| |''198.8{{Overline|63}}''
| |
| |25
| |
| |13
| |
| |1.923
| |
| |
| |
| |-
| |
| |
| |
| |27\95
| |
| |
| |
| |<u>198.773…</u>
| |
| |''198.947…''
| |
| |27
| |
| |14
| |
| |1.929
| |
| |
| |
| |-
| |
| |
| |
| |29\102
| |
| |
| |
| |<u>198.857…</u>
| |
| |''199.019…''
| |
| |29
| |
| |15
| |
| |1.933
| |
| |
| |
| |-
| |
| |
| |
| |31\109
| |
| |
| |
| |<u>198.930…</u>
| |
| |''199.082…''
| |
| |31
| |
| |16
| |
| |1.9375
| |
| |
| |
| |-
| |
| |
| |
| |33\116
| |
| |
| |
| |<u>198.994…</u>
| |
| |''199.137…''
| |
| |33
| |
| |17
| |
| |1.941
| |
| |
| |
| |-
| |
| |
| |
| |35\123
| |
| |
| |
| |<u>199.052…</u>
| |
| |''199.186…''
| |
| |35
| |
| |18
| |
| |1.944
| |
| |
| |
| |-
| |
| |2\7
| |
| |
| |
| |
| |
| |<u>200</u>
| |
| |''200''
| |
| |2
| |
| |1
| |
| |2.000
| |
| |Napoli-Meantone ends, Napoli-Pythagorean begins
| |
| |-
| |
| |
| |
| |19\66
| |
| |
| |
| |<u>201.769…</u>
| |
| |''201.{{Overline|51}}''
| |
| |19
| |
| |9
| |
| |2.111
| |
| |
| |
| |-
| |
| |
| |
| |17\59
| |
| |
| |
| |<u>201.980…</u>
| |
| |''201.694…''
| |
| |17
| |
| |8
| |
| |2.125
| |
| |
| |
| |-
| |
| |
| |
| |15\52
| |
| |
| |
| |<u>202.247…</u>
| |
| |''201.923…''
| |
| |15
| |
| |7
| |
| |2.143
| |
| |
| |
| |-
| |
| |
| |
| |13\45
| |
| |
| |
| |<u>202.597…</u>
| |
| |''202.{{Overline|2}}''
| |
| |13
| |
| |6
| |
| |2.167
| |
| |
| |
| |-
| |
| |
| |
| |11\38
| |
| |
| |
| |<u>203.076…</u>
| |
| |''202.631…''
| |
| |11
| |
| |5
| |
| |2.200
| |
| |
| |
| |-
| |
| |
| |
| |9\31
| |
| |
| |
| |<u>203.773…</u>
| |
| |''203.225…''
| |
| |9
| |
| |4
| |
| |2.250
| |
| |
| |
| |-
| |
| |
| |
| |7\24
| |
| |
| |
| |<u>204.878…</u>
| |
| |''204.1{{Overline|6}}''
| |
| |7
| |
| |3
| |
| |2.333
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |12\41
| |
| |<u>205.714…</u>
| |
| |''204.878…''
| |
| |12
| |
| |5
| |
| |2.400
| |
| |
| |
| |-
| |
| |
| |
| |5\17
| |
| |
| |
| |<u>206.896…</u>
| |
| |''205.882…''
| |
| |5
| |
| |2
| |
| |2.500
| |
| |Napoli-Neogothic heartland is from here…
| |
| |-
| |
| |
| |
| |
| |
| |18\61
| |
| |<u>207.692…</u>
| |
| |''206.557…''
| |
| |18
| |
| |7
| |
| |2.571
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |13\44
| |
| |<u>208</u>
| |
| |''206.{{Overline|81}}''
| |
| |13
| |
| |5
| |
| |2.600
| |
| |
| |
| |-
| |
| |
| |
| |8\27
| |
| |
| |
| |<u>208.695…</u>
| |
| |''207.{{Overline|407}}''
| |
| |8
| |
| |3
| |
| |2.667
| |
| |…to here
| |
| |-
| |
| |
| |
| |11\37
| |
| |
| |
| |<u>209.523…</u>
| |
| |''208.{{Overline|108}}''
| |
| |11
| |
| |4
| |
| |2.750
| |
| |
| |
| |-
| |
| |
| |
| |14\47
| |
| |
| |
| |<u>210</u>
| |
| |''208.510…''
| |
| |14
| |
| |5
| |
| |2.800
| |
| |
| |
| |-
| |
| |
| |
| |17\57
| |
| |
| |
| |<u>210.309…</u>
| |
| |''208.771…''
| |
| |17
| |
| |6
| |
| |2.833
| |
| |
| |
| |-
| |
| |
| |
| |20\67
| |
| |
| |
| |<u>210.526…</u>
| |
| |''208.955…''
| |
| |20
| |
| |7
| |
| |2.857
| |
| |
| |
| |-
| |
| |
| |
| |23\77
| |
| |
| |
| |<u>210.687…</u>
| |
| |''209.{{Overline|09}}''
| |
| |23
| |
| |8
| |
| |2.875
| |
| |
| |
| |-
| |
| |3\10
| |
| |
| |
| |
| |
| |<u>211.764…</u>
| |
| |''210''
| |
| |3
| |
| |1
| |
| |3.000
| |
| |Napoli-Pythagorean ends, Napoli-Superpyth begins
| |
| |-
| |
| |
| |
| |22\73
| |
| |
| |
| |<u>212.903…</u>
| |
| |''210.958…''
| |
| |22
| |
| |7
| |
| |3.143
| |
| |
| |
| |-
| |
| |
| |
| |19\63
| |
| |
| |
| |<u>213.084…</u>
| |
| |''211.{{Overline|1}}''
| |
| |19
| |
| |6
| |
| |3.167
| |
| |
| |
| |-
| |
| |
| |
| |16\53
| |
| |
| |
| |<u>213.{{Overline|3}}</u>
| |
| |''211.320…''
| |
| |16
| |
| |5
| |
| |3.200
| |
| |
| |
| |-
| |
| |
| |
| |13\43
| |
| |
| |
| |<u>213.698…</u>
| |
| |''211.627…''
| |
| |13
| |
| |4
| |
| |3.250
| |
| |
| |
| |-
| |
| |
| |
| |10\33
| |
| |
| |
| |<u>214.285…</u>
| |
| |''212.{{Overline|12}}''
| |
| |10
| |
| |3
| |
| |3.333
| |
| |
| |
| |-
| |
| |
| |
| |7\23
| |
| |
| |
| |<u>215.384…</u>
| |
| |''213.043…''
| |
| |7
| |
| |2
| |
| |3.500
| |
| |
| |
| |-
| |
| |
| |
| |11\36
| |
| |
| |
| |<u>216.393…</u>
| |
| |''213.{{Overline|3}}''
| |
| |11
| |
| |3
| |
| |3.667
| |
| |
| |
| |-
| |
| |
| |
| |15\49
| |
| |
| |
| |<u>216.867…</u>
| |
| |''214.285…''
| |
| |15
| |
| |4
| |
| |3.750
| |
| |
| |
| |-
| |
| |4\13
| |
| |
| |
| |
| |
| |<u>218.{{Overline|18}}</u>
| |
| |''215.385…''
| |
| |4
| |
| |1
| |
| |4.000
| |
| |
| |
| |-
| |
| |
| |
| |13\42
| |
| |
| |
| |<u>219.718…</u>
| |
| |''216.{{Overline|6}}''
| |
| |13
| |
| |3
| |
| |4.333
| |
| |
| |
| |-
| |
| |
| |
| |9\29
| |
| |
| |
| |<u>220.408…</u>
| |
| |''217.241…''
| |
| |9
| |
| |2
| |
| |4.500
| |
| |
| |
| |-
| |
| |
| |
| |14\45
| |
| |
| |
| |<u>221.052…</u>
| |
| |''217.{{Overline|7}}''
| |
| |14
| |
| |3
| |
| |4.667
| |
| |
| |
| |-
| |
| |5\16
| |
| |
| |
| |
| |
| |<u>222.{{Overline|2}}</u>
| |
| |''218.75''
| |
| |5
| |
| |1
| |
| |5.000
| |
| |Napoli-Superpyth ends
| |
| |-
| |
| |
| |
| |16\51
| |
| |
| |
| |<u>223.255…</u>
| |
| |''219.607…''
| |
| |16
| |
| |3
| |
| |5.333
| |
| |
| |
| |-
| |
| |
| |
| |11\35
| |
| |
| |
| |<u>223.728…</u>
| |
| |''220''
| |
| |11
| |
| |2
| |
| |5.500
| |
| |
| |
| |-
| |
| |
| |
| |17\54
| |
| |
| |
| |<u>224.175…</u>
| |
| |''220.{{Overline|370}}''
| |
| |17
| |
| |3
| |
| |5.667
| |
| |
| |
| |-
| |
| |6\19
| |
| |
| |
| |
| |
| |<u>225</u>
| |
| |''221.052…''
| |
| |6
| |
| |1
| |
| |6.000
| |
| |
| |
| |-
| |
| |1\3
| |
| |
| |
| |
| |
| |<u>240</u>
| |
| |''233.{{Overline|3}}''
| |
| |1
| |
| |0
| |
| |→ inf
| |
| |Paucitonic
| |
| |}
| |
| <nowiki />* Because this temperament almost seems too good to be true. | | <nowiki />* Because this temperament almost seems too good to be true. |
| [[Category:31edo]] | | [[Category:31edo]] |
| [[Category:meantone]] | | [[Category:meantone]] |
| [[Category:pentave]] | | [[Category:pentave]] |