JI: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 296282534 - Original comment: **
Fredg999 category edits (talk | contribs)
m Categories
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
#REDIRECT [[Just intonation]]
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-29 06:14:04 UTC</tt>.<br>
: The original revision id was <tt>296282534</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
----
=Just Intonation explained=
JI, or [[Just Intonation]] describes [[Gallery of Just Intervals|intervals]] between pitches by specifying ratios (of [[http://en.wikipedia.org/wiki/Rational_number|rational numbers]]) between the frequencies of pitches. This is sometimes distinguished from //rational intonation// by requiring that the ratios be ones of low complexity (as for example measured by [[Benedetti height]]) but there is no clear dividing line. The matter is partially a question of intent. The rank two tuning system in which all intervals are given as combinations of the just perfect fourth, 4/3, and the just minor third, 6/5, would seem to be a nonoctave 5-limit just intonation system by definition. In practice, it can hardly be used except as a rank two 7-limit [[Microtempering|microtempering]] system because of certain very accurate approximations to the octave and to seven limit intervals: (6/5)^2/(4/3) = 27/25, the semitone maximus or just minor second; and (27/25)^9 is less than a cent short of an octave, while (27/25)^2 is almost precisely 7/6, the [[http://en.wikipedia.org/wiki/Septimal_minor_third|septimal minor third]].


If you are used to speaking only in note names, you may need to study the relation between frequency and [[http://en.wikipedia.org/wiki/Pitch_%28music%29|pitch]]. Kyle Gann's //[[http://www.kylegann.com/tuning.html|Just Intonation Explained]]// is one good reference. A transparent illustration and one of just intonation's acoustic bases is the [[OverToneSeries|harmonic series]].
[[Category:Acronyms]]
 
=Just Intonation used=
The use of just intonation could be divided into these two flavors:
 
==Free Style Just==
= =
Lou Harrison used this term; it means that you choose just-intonation pitches, from the set of all possible just intervals (not from a mode or scale), as you use them in music. Dedicated page -&gt; [[FreeStyleJI]]
 
==Constrained Just==
(In need of a better name maybe) Here are six ways that musicians and theorists have constrained the field of potential just ratios (from Jacques Dudon, "Differential Coherence", //1/1// vol. 11, no. 2: p.1):
 
//1. The principle of "[[Harmonic Limit|harmonic limits]]," which sets a threshold in order to place a limit on the largest prime number in any ratio (cf: Tanner's "psycharithmes" and his ordering by complexity; Gioseffe Zarlino's five-limit "senario," and the like; Helmholtz's theory of consonance with its "blending of partials," which, like the others, results in giving priority to the lowest prime numbers).//
 
//2. Restrictions on the combinations of numbers that make up the numerator and denominator of the ratios under consideration, such as the "monophonic" system of [[http://en.wikipedia.org/wiki/Harry_Partch|Harry Partch]]'s [[http://en.wikipedia.org/wiki/Pitch_%28music%29|tonality diamond]]. This, incidentially, is an eleven-limit system that only makes use of ratios of the form n:d, where n and d are drawn only from harmonics 1,3 5 7 9, 11, or their octaves.//
 
//3. Other theorists who, in contrast to the above, advocate the use of [[http://en.wikipedia.org/wiki/Hexany|products sets]] of given arrays of prime numbers, such as [[http://en.wikipedia.org/wiki/Erv_Wilson|Ervin Wilson]],////Robert Dussaut,// //and others.//
 
//4. [[Just intonation subgroups|Restrictions on the variety of prime numbers]] used within a system, for example, 3 used with only one [sic, also included is 2] other prime 7, 11, or 13.... This is quite common practice with Ptolemy, Ibn-Sina, Al-Farabi, and Saf-al-Din, and with numerous contemporary composers working in Just Intonation.//
 
//5. Restricting the denominator to one or very few values (the [[OverToneSeries|harmonic series]]).//
 
//6. Restricting the numerator to one or a very few values (the [[subharmonic series]] or [[aliquot scales]]).//
 
to this can be added
//7. The use of// //harmonic// //mediants as was common with the Ancient Greeks. This can also involve further divisions besides two parts as seen with Ptolemy sometimes using 3 parts. The Chinese have historically used as many as 10 parts.//
 
//8. While related to the above, the use of recurrent sequences is by some included under JI as it involves whole numbers. Wilson's [[http://anaphoria.com/wilsonintroMERU.html|Meru scales]] are a good example as well as Jacques Dudon//
 
=Variations on 'Just'=
[[Regular Temperaments]] are just intonation systems of various [[harmonic limits]] with certain commas 'tempered out'
[[AdaptiveJI|Adaptive JI]]
 
=Links=
[[hypergenesis58.scl|58 note 11 limit JI]] - hyper-Partchian!
[[Hahn distance]]
[[Gallery of Just Intervals]]
[[Gallery of 12-tone Just Intonation Scales]]
[[boogiewoogiescale|Boogie woogie scale]]
[[Arnold Dreyblatt]]
[[Gallery of pentatonics]]
[[FiniteSubsetJI]]
 
=Articles=
* [[http://en.wikipedia.org/wiki/Just_intonation|Wikipedia article on just intonation]]
* [[http://nowitzky.hostwebs.com/justint/|Just Intonation]] by Mark Nowitzky [http://www.webcitation.org/5xeAm2lPL|Permalink]][[http://www.webcitation.org/5xeAm2lPL|Permalink]]
* [[http://www.kylegann.com/tuning.html|Just Intonation Explained]] by Kyle Gann [[http://www.webcitation.org/5xe2iC7Nq|Permalink]]
* [[http://www.kylegann.com/Octave.html|Anatomy of an Octave]] by Kyle Gann [[http://www.webcitation.org/5xe30LCev|Permalink]]
* [[http://www.dbdoty.com/Words/What-is-Just-Intonation.html|What is Just Intonation?]] by David B. Doty [[http://www.webcitation.org/5xe3MeWVq|Permalink]]
* [[http://www.dbdoty.com/Words/werntz.html|A Response to Julia Werntz]] by David B. Doty [[http://www.webcitation.org/5xe38KWx4|Permalink]]
* [[http://lumma.org/tuning/gws/commaseq.htm|Comma Sequences]] by Gene Ward Smith [[http://www.webcitation.org/5xe4rPLZ0|Permalink]]
 
</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;JI&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:16:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;a href="#Just Intonation explained"&gt;Just Intonation explained&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Just Intonation used"&gt;Just Intonation used&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#toc3"&gt; &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#Variations on 'Just'"&gt;Variations on 'Just'&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#Links"&gt;Links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#Articles"&gt;Articles&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;hr /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Just Intonation explained"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Just Intonation explained&lt;/h1&gt;
JI, or &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt; describes &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;intervals&lt;/a&gt; between pitches by specifying ratios (of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rational_number" rel="nofollow"&gt;rational numbers&lt;/a&gt;) between the frequencies of pitches. This is sometimes distinguished from &lt;em&gt;rational intonation&lt;/em&gt; by requiring that the ratios be ones of low complexity (as for example measured by &lt;a class="wiki_link" href="/Benedetti%20height"&gt;Benedetti height&lt;/a&gt;) but there is no clear dividing line. The matter is partially a question of intent. The rank two tuning system in which all intervals are given as combinations of the just perfect fourth, 4/3, and the just minor third, 6/5, would seem to be a nonoctave 5-limit just intonation system by definition. In practice, it can hardly be used except as a rank two 7-limit &lt;a class="wiki_link" href="/Microtempering"&gt;microtempering&lt;/a&gt; system because of certain very accurate approximations to the octave and to seven limit intervals: (6/5)^2/(4/3) = 27/25, the semitone maximus or just minor second; and (27/25)^9 is less than a cent short of an octave, while (27/25)^2 is almost precisely 7/6, the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Septimal_minor_third" rel="nofollow"&gt;septimal minor third&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
If you are used to speaking only in note names, you may need to study the relation between frequency and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Pitch_%28music%29" rel="nofollow"&gt;pitch&lt;/a&gt;. Kyle Gann's &lt;em&gt;&lt;a class="wiki_link_ext" href="http://www.kylegann.com/tuning.html" rel="nofollow"&gt;Just Intonation Explained&lt;/a&gt;&lt;/em&gt; is one good reference. A transparent illustration and one of just intonation's acoustic bases is the &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonic series&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Just Intonation used"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Just Intonation used&lt;/h1&gt;
The use of just intonation could be divided into these two flavors:&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Just Intonation used-Free Style Just"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Free Style Just&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt; &lt;/h1&gt;
Lou Harrison used this term; it means that you choose just-intonation pitches, from the set of all possible just intervals (not from a mode or scale), as you use them in music. Dedicated page -&amp;gt; &lt;a class="wiki_link" href="/FreeStyleJI"&gt;FreeStyleJI&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Just Intonation used-Constrained Just"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Constrained Just&lt;/h2&gt;
(In need of a better name maybe) Here are six ways that musicians and theorists have constrained the field of potential just ratios (from Jacques Dudon, &amp;quot;Differential Coherence&amp;quot;, &lt;em&gt;1/1&lt;/em&gt; vol. 11, no. 2: p.1):&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;1. The principle of &amp;quot;&lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;harmonic limits&lt;/a&gt;,&amp;quot; which sets a threshold in order to place a limit on the largest prime number in any ratio (cf: Tanner's &amp;quot;psycharithmes&amp;quot; and his ordering by complexity; Gioseffe Zarlino's five-limit &amp;quot;senario,&amp;quot; and the like; Helmholtz's theory of consonance with its &amp;quot;blending of partials,&amp;quot; which, like the others, results in giving priority to the lowest prime numbers).&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;2. Restrictions on the combinations of numbers that make up the numerator and denominator of the ratios under consideration, such as the &amp;quot;monophonic&amp;quot; system of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Harry_Partch" rel="nofollow"&gt;Harry Partch&lt;/a&gt;'s &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Pitch_%28music%29" rel="nofollow"&gt;tonality diamond&lt;/a&gt;. This, incidentially, is an eleven-limit system that only makes use of ratios of the form n:d, where n and d are drawn only from harmonics 1,3 5 7 9, 11, or their octaves.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;3. Other theorists who, in contrast to the above, advocate the use of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Hexany" rel="nofollow"&gt;products sets&lt;/a&gt; of given arrays of prime numbers, such as &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Erv_Wilson" rel="nofollow"&gt;Ervin Wilson&lt;/a&gt;,&lt;/em&gt;&lt;em&gt;Robert Dussaut,&lt;/em&gt; &lt;em&gt;and others.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;4. &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;Restrictions on the variety of prime numbers&lt;/a&gt; used within a system, for example, 3 used with only one [sic, also included is 2] other prime 7, 11, or 13.... This is quite common practice with Ptolemy, Ibn-Sina, Al-Farabi, and Saf-al-Din, and with numerous contemporary composers working in Just Intonation.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;5. Restricting the denominator to one or very few values (the &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonic series&lt;/a&gt;).&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;6. Restricting the numerator to one or a very few values (the &lt;a class="wiki_link" href="/subharmonic%20series"&gt;subharmonic series&lt;/a&gt; or &lt;a class="wiki_link" href="/aliquot%20scales"&gt;aliquot scales&lt;/a&gt;).&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
to this can be added&lt;br /&gt;
&lt;em&gt;7. The use of&lt;/em&gt; &lt;em&gt;harmonic&lt;/em&gt; &lt;em&gt;mediants as was common with the Ancient Greeks. This can also involve further divisions besides two parts as seen with Ptolemy sometimes using 3 parts. The Chinese have historically used as many as 10 parts.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;8. While related to the above, the use of recurrent sequences is by some included under JI as it involves whole numbers. Wilson's &lt;a class="wiki_link_ext" href="http://anaphoria.com/wilsonintroMERU.html" rel="nofollow"&gt;Meru scales&lt;/a&gt; are a good example as well as Jacques Dudon&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Variations on 'Just'"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Variations on 'Just'&lt;/h1&gt;
&lt;a class="wiki_link" href="/Regular%20Temperaments"&gt;Regular Temperaments&lt;/a&gt; are just intonation systems of various &lt;a class="wiki_link" href="/harmonic%20limits"&gt;harmonic limits&lt;/a&gt; with certain commas 'tempered out'&lt;br /&gt;
&lt;a class="wiki_link" href="/AdaptiveJI"&gt;Adaptive JI&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Links&lt;/h1&gt;
&lt;a class="wiki_link" href="/hypergenesis58.scl"&gt;58 note 11 limit JI&lt;/a&gt; - hyper-Partchian!&lt;br /&gt;
&lt;a class="wiki_link" href="/Hahn%20distance"&gt;Hahn distance&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/Gallery%20of%2012-tone%20Just%20Intonation%20Scales"&gt;Gallery of 12-tone Just Intonation Scales&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/boogiewoogiescale"&gt;Boogie woogie scale&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/Arnold%20Dreyblatt"&gt;Arnold Dreyblatt&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/Gallery%20of%20pentatonics"&gt;Gallery of pentatonics&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/FiniteSubsetJI"&gt;FiniteSubsetJI&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Articles"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Articles&lt;/h1&gt;
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Just_intonation" rel="nofollow"&gt;Wikipedia article on just intonation&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://nowitzky.hostwebs.com/justint/" rel="nofollow"&gt;Just Intonation&lt;/a&gt; by Mark Nowitzky [&lt;!-- ws:start:WikiTextUrlRule:126:http://www.webcitation.org/5xeAm2lPL --&gt;&lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xeAm2lPL" rel="nofollow"&gt;http://www.webcitation.org/5xeAm2lPL&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:126 --&gt;|Permalink]]&lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xeAm2lPL" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.kylegann.com/tuning.html" rel="nofollow"&gt;Just Intonation Explained&lt;/a&gt; by Kyle Gann &lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xe2iC7Nq" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.kylegann.com/Octave.html" rel="nofollow"&gt;Anatomy of an Octave&lt;/a&gt; by Kyle Gann &lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xe30LCev" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.dbdoty.com/Words/What-is-Just-Intonation.html" rel="nofollow"&gt;What is Just Intonation?&lt;/a&gt; by David B. Doty &lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xe3MeWVq" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.dbdoty.com/Words/werntz.html" rel="nofollow"&gt;A Response to Julia Werntz&lt;/a&gt; by David B. Doty &lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xe38KWx4" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://lumma.org/tuning/gws/commaseq.htm" rel="nofollow"&gt;Comma Sequences&lt;/a&gt; by Gene Ward Smith &lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xe4rPLZ0" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 16:01, 12 March 2022

Redirect to: