Seventeen limit tetrads: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>guest
**Imported revision 314219342 - Original comment: **
Wikispaces>Andrew_Heathwaite
**Imported revision 314262300 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-03-24 13:18:53 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2012-03-24 18:49:18 UTC</tt>.<br>
: The original revision id was <tt>314219342</tt>.<br>
: The original revision id was <tt>314262300</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 17th harmonic, octave reduced to the frequency ratio [[17_16|17/16]], is about 105¢. It is likely to sound dissonant against the fundamental, which is perhaps one reason why [[Just Intonation]] composers usually stop at the [[13-limit]] or lower. Another interval of 17 that can sound just as dissonant is [[18_17|18/17]], about 99¢. Thus, 17/16 also clashes with [[9_8|9/8]]. Therefore, one approach for 17-limit harmony is to filter the total list of chords to exclude these small steps, resulting in non-rooted harmonies.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 17th harmonic, octave reduced to the frequency ratio [[17_16|17/16]], is about 105¢. It is likely to sound dissonant against the fundamental, which is perhaps one reason why [[Just Intonation]] composers usually stop at the [[13-limit]] or lower. Another interval of 17 that can sound just as dissonant is [[18_17|18/17]], about 99¢. Thus, 17/16 also clashes with [[9_8|9/8]]. Therefore, one approach for 17-limit harmony is to filter the total list of chords to exclude these small steps, resulting in non-rooted harmonies.


Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain 17/16 or 18/17 among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)
Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain any interval smaller than or equal to 16/15 (which includes 17/16 and 18/17) among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)
||~  ||~  ||~  ||~  ||~  ||~  ||~  ||~  ||
||~  ||~  ||~  ||~  ||~  ||~  ||~  ||~  ||
||~ no cutoff
||~ no cutoff
Line 79: Line 79:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;seventeen limit tetrads&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 17th harmonic, octave reduced to the frequency ratio &lt;a class="wiki_link" href="/17_16"&gt;17/16&lt;/a&gt;, is about 105¢. It is likely to sound dissonant against the fundamental, which is perhaps one reason why &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt; composers usually stop at the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; or lower. Another interval of 17 that can sound just as dissonant is &lt;a class="wiki_link" href="/18_17"&gt;18/17&lt;/a&gt;, about 99¢. Thus, 17/16 also clashes with &lt;a class="wiki_link" href="/9_8"&gt;9/8&lt;/a&gt;. Therefore, one approach for 17-limit harmony is to filter the total list of chords to exclude these small steps, resulting in non-rooted harmonies.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;seventeen limit tetrads&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 17th harmonic, octave reduced to the frequency ratio &lt;a class="wiki_link" href="/17_16"&gt;17/16&lt;/a&gt;, is about 105¢. It is likely to sound dissonant against the fundamental, which is perhaps one reason why &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt; composers usually stop at the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; or lower. Another interval of 17 that can sound just as dissonant is &lt;a class="wiki_link" href="/18_17"&gt;18/17&lt;/a&gt;, about 99¢. Thus, 17/16 also clashes with &lt;a class="wiki_link" href="/9_8"&gt;9/8&lt;/a&gt;. Therefore, one approach for 17-limit harmony is to filter the total list of chords to exclude these small steps, resulting in non-rooted harmonies.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain 17/16 or 18/17 among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)&lt;br /&gt;
Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain any interval smaller than or equal to 16/15 (which includes 17/16 and 18/17) among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)&lt;br /&gt;





Revision as of 18:49, 24 March 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2012-03-24 18:49:18 UTC.
The original revision id was 314262300.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 17th harmonic, octave reduced to the frequency ratio [[17_16|17/16]], is about 105¢. It is likely to sound dissonant against the fundamental, which is perhaps one reason why [[Just Intonation]] composers usually stop at the [[13-limit]] or lower. Another interval of 17 that can sound just as dissonant is [[18_17|18/17]], about 99¢. Thus, 17/16 also clashes with [[9_8|9/8]]. Therefore, one approach for 17-limit harmony is to filter the total list of chords to exclude these small steps, resulting in non-rooted harmonies.

Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain any interval smaller than or equal to 16/15 (which includes 17/16 and 18/17) among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)
||~   ||~   ||~   ||~   ||~   ||~   ||~   ||~   ||
||~ no cutoff
56 tetrads ||~ 16/15 cutoff
20 tetrads ||~ 15/14 cutoff
16 tetrads ||~ 14/13 cutoff
13 tetrads ||~ 13/12 cutoff
10 tetrads ||~ 12/11 cutoff
7 tetrads ||~ 9/8 cutoff
4 tetrads ||~ 17/15 cutoff
1 tetrad ||
|| 2:3:5:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:3:7:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:3:9:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:3:11:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:3:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:3:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:5:7:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:5:9:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:5:11:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:5:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:5:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:7:9:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:7:11:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:7:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:7:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:9:11:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:9:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:9:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:11:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:11:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 2:13:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 3:5:7:17 || x || x || x || x || x || x || x ||
|| 3:5:9:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 3:5:11:17 || x || x || x || x ||   ||   ||   ||
|| 3:5:13:17 || x || x || x ||   ||   ||   ||   ||
|| 3:5:15:17 || x || x || x || x || x || x ||   ||
|| 3:7:9:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 3:7:11:17 || x || x || x || x ||   ||   ||   ||
|| 3:7:13:17 || x || x ||   ||   ||   ||   ||   ||
|| 3:7:15:17 || x ||   ||   ||   ||   ||   ||   ||
|| 3:9:11:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 3:9:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 3:9:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 3:11:13:17 || x || x || x ||   ||   ||   ||   ||
|| 3:11:15:17 || x || x || x || x ||   ||   ||   ||
|| 3:13:15:17 || x || x || x ||   ||   ||   ||   ||
|| 5:7:9:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 5:7:11:17 || x || x || x || x || x ||   ||   ||
|| 5:7:13:17 || x || x ||   ||   ||   ||   ||   ||
|| 5:7:15:17 || x ||   ||   ||   ||   ||   ||   ||
|| 5:9:11:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 5:9:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 5:9:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 5:11:13:17 || x || x || x || x || x ||   ||   ||
|| 5:11:15:17 || x || x || x || x || x ||   ||   ||
|| 5:13:15:17 || x || x || x || x || x || x ||   ||
|| 7:9:11:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 7:9:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 7:9:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 7:11:13:17 || x || x ||   ||   ||   ||   ||   ||
|| 7:11:15:17 || x ||   ||   ||   ||   ||   ||   ||
|| 7:13:15:17 || x ||   ||   ||   ||   ||   ||   ||
|| 9:11:13:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 9:11:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 9:13:15:17 ||   ||   ||   ||   ||   ||   ||   ||
|| 11:13:15:17 || x || x || x || x || x || x ||   ||
||~   ||~   ||~   ||~   ||~   ||~   ||~   ||~   ||

Original HTML content:

<html><head><title>seventeen limit tetrads</title></head><body>The 17th harmonic, octave reduced to the frequency ratio <a class="wiki_link" href="/17_16">17/16</a>, is about 105¢. It is likely to sound dissonant against the fundamental, which is perhaps one reason why <a class="wiki_link" href="/Just%20Intonation">Just Intonation</a> composers usually stop at the <a class="wiki_link" href="/13-limit">13-limit</a> or lower. Another interval of 17 that can sound just as dissonant is <a class="wiki_link" href="/18_17">18/17</a>, about 99¢. Thus, 17/16 also clashes with <a class="wiki_link" href="/9_8">9/8</a>. Therefore, one approach for 17-limit harmony is to filter the total list of chords to exclude these small steps, resulting in non-rooted harmonies.<br />
<br />
Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain any interval smaller than or equal to 16/15 (which includes 17/16 and 18/17) among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)<br />


<table class="wiki_table">
    <tr>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
    </tr>
    <tr>
        <th>no cutoff<br />
56 tetrads<br />
</th>
        <th>16/15 cutoff<br />
20 tetrads<br />
</th>
        <th>15/14 cutoff<br />
16 tetrads<br />
</th>
        <th>14/13 cutoff<br />
13 tetrads<br />
</th>
        <th>13/12 cutoff<br />
10 tetrads<br />
</th>
        <th>12/11 cutoff<br />
7 tetrads<br />
</th>
        <th>9/8 cutoff<br />
4 tetrads<br />
</th>
        <th>17/15 cutoff<br />
1 tetrad<br />
</th>
    </tr>
    <tr>
        <td>2:3:5:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:3:7:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:3:9:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:3:11:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:3:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:3:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:5:7:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:5:9:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:5:11:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:5:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:5:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:7:9:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:7:11:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:7:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:7:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:9:11:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:9:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:9:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:11:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:11:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2:13:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:5:7:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
    </tr>
    <tr>
        <td>3:5:9:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:5:11:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:5:13:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:5:15:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:7:9:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:7:11:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:7:13:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:7:15:17<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:9:11:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:9:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:9:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:11:13:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:11:15:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3:13:15:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:7:9:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:7:11:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:7:13:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:7:15:17<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:9:11:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:9:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:9:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:11:13:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:11:15:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5:13:15:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7:9:11:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7:9:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7:9:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7:11:13:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7:11:15:17<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7:13:15:17<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9:11:13:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9:11:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9:13:15:17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>11:13:15:17<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td>x<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
    </tr>
</table>

</body></html>