OTC JI 22 sruti scale: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>spt3125 **Imported revision 590312498 - Original comment: ** |
Wikispaces>spt3125 **Imported revision 590312774 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2016-08-28 22: | : This revision was by author [[User:spt3125|spt3125]] and made on <tt>2016-08-28 22:22:38 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>590312774</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">22-tone Indian 'sruti' scale | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This page examines the [[omnitetrachordality]] of the 22-tone Indian 'sruti' scale, a 5-limit [[Just intonation|JI]] scale with three step sizes -- one of many possible theoretical tunings for Indian classical music. (This scale may be found in the [[Scala]] archive as {{ indian.scl }}.) | ||
||= **scale step** ||= **ratio** ||> **cents** ||= **name** || | ||= **scale step** ||= **ratio** ||> **cents** ||= **name** || | ||
Line 135: | Line 134: | ||
===See also=== | ===See also=== | ||
* [[Gallery of omnitetrachordal scales]] | * [[Gallery of omnitetrachordal scales]] | ||
Line 141: | Line 139: | ||
* Noted as omnitetrachordal by Paul Erlich; date unknown.</pre></div> | * Noted as omnitetrachordal by Paul Erlich; date unknown.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>OTC JI 22 sruti scale</title></head><body>22-tone Indian 'sruti' scale | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>OTC JI 22 sruti scale</title></head><body>This page examines the <a class="wiki_link" href="/omnitetrachordality">omnitetrachordality</a> of the 22-tone Indian 'sruti' scale, a 5-limit <a class="wiki_link" href="/Just%20intonation">JI</a> scale with three step sizes -- one of many possible theoretical tunings for Indian classical music. (This scale may be found in the <a class="wiki_link" href="/Scala">Scala</a> archive as <tt> indian.scl </tt>.)<br /> | ||
<br /> | <br /> | ||
Line 828: | Line 825: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:1:&lt;h3&gt; --><h3 id="toc0"><a name="x--See also"></a><!-- ws:end:WikiTextHeadingRule:1 -->See also</h3> | <!-- ws:start:WikiTextHeadingRule:1:&lt;h3&gt; --><h3 id="toc0"><a name="x--See also"></a><!-- ws:end:WikiTextHeadingRule:1 -->See also</h3> | ||
<ul | <ul><li><a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales">Gallery of omnitetrachordal scales</a></li></ul><br /> | ||
<!-- ws:start:WikiTextHeadingRule:3:&lt;h3&gt; --><h3 id="toc1"><a name="x--References"></a><!-- ws:end:WikiTextHeadingRule:3 -->References</h3> | <!-- ws:start:WikiTextHeadingRule:3:&lt;h3&gt; --><h3 id="toc1"><a name="x--References"></a><!-- ws:end:WikiTextHeadingRule:3 -->References</h3> | ||
<ul><li>Noted as omnitetrachordal by Paul Erlich; date unknown.</li></ul></body></html></pre></div> | <ul><li>Noted as omnitetrachordal by Paul Erlich; date unknown.</li></ul></body></html></pre></div> |
Revision as of 22:22, 28 August 2016
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author spt3125 and made on 2016-08-28 22:22:38 UTC.
- The original revision id was 590312774.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This page examines the [[omnitetrachordality]] of the 22-tone Indian 'sruti' scale, a 5-limit [[Just intonation|JI]] scale with three step sizes -- one of many possible theoretical tunings for Indian classical music. (This scale may be found in the [[Scala]] archive as {{ indian.scl }}.) ||= **scale step** ||= **ratio** ||> **cents** ||= **name** || ||= 0 ||= 1/1 ||> 0.000 ||= Sa || ||= 1 ||= 256/243 ||> 90.225 ||= r1 || ||= 2 ||= 16/15 ||> 111.731 ||= r2 || ||= 3 ||= 10/9 ||> 182.404 ||= R3 || ||= 4 ||= 9/8 ||> 203.910 ||= R4 || ||= 5 ||= 32/27 ||> 294.135 ||= g1 || ||= 6 ||= 6/5 ||> 315.641 ||= g2 || ||= 7 ||= 5/4 ||> 386.314 ||= G3 || ||= 8 ||= 81/64 ||> 407.820 ||= G4 || ||= 9 ||= 4/3 ||> 498.045 ||= Ma || ||= 10 ||= 27/20 ||> 519.551 ||= m2 || ||= 11 ||= 45/32 ||> 590.224 ||= m3 || ||= 12 ||= 729/512 ||> 611.730 ||= m4 || ||= 13 ||= 3/2 ||> 701.955 ||= Pa || ||= 14 ||= 128/81 ||> 792.180 ||= d1 || ||= 15 ||= 8/5 ||> 813.686 ||= d2 || ||= 16 ||= 5/3 ||> 884.359 ||= D3 || ||= 17 ||= 27/16 ||> 905.865 ||= D4 || ||= 18 ||= 16/9 ||> 996.090 ||= n1 || ||= 19 ||= 9/5 ||> 1017.596 ||= n2 || ||= 20 ||= 15/8 ||> 1088.269 ||= N3 || ||= 21 ||= 243/128 ||> 1109.775 ||= N4 || ||= 22 ||= 2/1 ||> 1200.000 ||= Sa || A = 256/243 (90.225 cents) b = 81/80 (21.506 cents) c = 25/24 (70.672 cents) 9/8 = A+2b+c 4/3 = 3A+4b+2c 2/1 = 7A+10b+5c ||= **interval** ||= **ratio** ||= **step size** || ||= 1-2 ||= 256/243 ||= A || ||= 2-3 ||= 81/80 ||= b || ||= 3-4 ||= 25/24 ||= c || ||= 4-5 ||= 81/80 ||= b || ||= 5-6 ||= 256/243 ||= A || ||= 6-7 ||= 81/80 ||= b || ||= 7-8 ||= 25/24 ||= c || ||= 8-9 ||= 81/80 ||= b || ||= 9-10 ||= 256/243 ||= A || ||= 10-11 ||= 81/80 ||= b || ||= 11-12 ||= 25/24 ||= c || ||= 12-13 ||= 81/80 ||= b || ||= 13-14 ||= 256/243 ||= A || ||= 14-15 ||= 256/243 ||= A || ||= 15-16 ||= 81/80 ||= b || ||= 16-17 ||= 25/24 ||= c || ||= 17-18 ||= 81/80 ||= b || ||= 18-19 ||= 256/243 ||= A || ||= 19-20 ||= 81/80 ||= b || ||= 20-21 ||= 25/24 ||= c || ||= 21-22 ||= 81/80 ||= b || ||= 22-1 ||= 256/243 ||= A || all modes: || {{ Abcb AbcbAbcbA AbcbAbcbA }} || {{ AbcbAbcbA bcbA AbcbAbcbA }} || || || {{ bcbA bcbAbcbAA bcbAbcbAA }} || || || || {{ cbAb cbAbcbAAb cbAbcbAAb }} || || || || {{ bAbc bAbcbAAbc bAbcbAAbc }} || || || || {{ Abcb AbcbAAbcb AbcbAAbcb }} || || {{ AbcbAbcbA AbcbAbcbA Abcb }} || || {{ bcbA bcbAAbcbA bcbAAbcbA }} || || {{ bcbAbcbAA bcbAbcbAA bcbA }} || || {{ cbAb cbAAbcbAb cbAAbcbAb }} || || {{ cbAbcbAAb cbAbcbAAb cbAb }} || || {{ bAbc bAAbcbAbc bAAbcbAbc }} || || {{ bAbcbAAbc bAbcbAAbc bAbc }} || || {{ Abcb AAbcbAbcb AAbcbAbcb }} || || {{ AbcbAAbcb AbcbAAbcb Abcb }} || || {{ bcbA AbcbAbcbA AbcbAbcbA }} || || {{ bcbAAbcbA bcbAAbcbA bcbA }} || || || || {{ cbAAbcbAb cbAAbcbAb cbAb }} || || || || {{ bAAbcbAbc bAAbcbAbc bAbc }} || || || || {{ AAbcbAbcb AAbcbAbcb Abcb }} || || || {{ AbcbAbcbA Abcb AbcbAbcbA }} || {{ AbcbAbcbA AbcbAbcbA bcbA }} || || || {{ bcbAbcbAA bcbA bcbAbcbAA }} || || || || {{ cbAbcbAAb cbAb cbAbcbAAb }} || || || || {{ bAbcbAAbc bAbc bAbcbAAbc }} || || || || {{ AbcbAAbcb Abcb AbcbAAbcb }} || || || || {{ bcbAAbcbA bcbA bcbAAbcbA }} || || || || {{ cbAAbcbAb cbAb cbAAbcbAb }} || || || || {{ bAAbcbAbc bAbc bAAbcbAbc }} || || || || {{ AAbcbAbcb Abcb AAbcbAbcb }} || || lattice: [[code]] R3 -- D3 -- G3 -- N3 -- m3 | | | | | r1 -- d1 -- g1 -- n1 -- Ma -- Sa -- Pa -- R4 -- D4 -- G4 -- N4 -- m4 | | | | | r2 -- d2 -- g2 -- n2 -- m2 5 | 1 -- 3 10 5 5 15 45 / --- / --- / --- / --- / 9 3 4 8 32 | | | | | 256 128 32 16 4 1 3 9 27 81 243 729 / --- / --- / --- / --- / --- / --- / --- / --- / --- / --- / --- / 243 81 27 9 3 1 2 8 16 64 128 512 | | | | | 16 8 6 9 27 / --- / --- / --- / --- / 15 5 5 5 20 [[code]] This scale could be considered a detempering of the following OTC scales with two step sizes: [[OTC 17L 5s|OTC 17L+5s]] (A=L, b=L, c=s) superpyth MOS {{ AbcbAbcbAbcbAAbcbAbcbA }} {{ LLsLLLsLLLsLLLLsLLLsLL }} [[OTC 15L 7s|OTC 15L+7s]] (A=s, b=L, c=L) porcupine MODMOS {{ AbcbAbcbAbcbAAbcbAbcbA }} {{ sLLLsLLLsLLLssLLLsLLLs }} [[OTC 12L 10s|OTC 12L+10s]] (A=L, b=s, c=L) pajara MODMOS {{ AbcbAbcbAbcbAAbcbAbcbA }} {{ LsLsLsLsLsLsLLsLsLsLsL }} (form 1) ===See also=== * [[Gallery of omnitetrachordal scales]] ===References=== * Noted as omnitetrachordal by Paul Erlich; date unknown.
Original HTML content:
<html><head><title>OTC JI 22 sruti scale</title></head><body>This page examines the <a class="wiki_link" href="/omnitetrachordality">omnitetrachordality</a> of the 22-tone Indian 'sruti' scale, a 5-limit <a class="wiki_link" href="/Just%20intonation">JI</a> scale with three step sizes -- one of many possible theoretical tunings for Indian classical music. (This scale may be found in the <a class="wiki_link" href="/Scala">Scala</a> archive as <tt> indian.scl </tt>.)<br /> <br /> <table class="wiki_table"> <tr> <td style="text-align: center;"><strong>scale step</strong><br /> </td> <td style="text-align: center;"><strong>ratio</strong><br /> </td> <td style="text-align: right;"><strong>cents</strong><br /> </td> <td style="text-align: center;"><strong>name</strong><br /> </td> </tr> <tr> <td style="text-align: center;">0<br /> </td> <td style="text-align: center;">1/1<br /> </td> <td style="text-align: right;">0.000<br /> </td> <td style="text-align: center;">Sa<br /> </td> </tr> <tr> <td style="text-align: center;">1<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: right;">90.225<br /> </td> <td style="text-align: center;">r1<br /> </td> </tr> <tr> <td style="text-align: center;">2<br /> </td> <td style="text-align: center;">16/15<br /> </td> <td style="text-align: right;">111.731<br /> </td> <td style="text-align: center;">r2<br /> </td> </tr> <tr> <td style="text-align: center;">3<br /> </td> <td style="text-align: center;">10/9<br /> </td> <td style="text-align: right;">182.404<br /> </td> <td style="text-align: center;">R3<br /> </td> </tr> <tr> <td style="text-align: center;">4<br /> </td> <td style="text-align: center;">9/8<br /> </td> <td style="text-align: right;">203.910<br /> </td> <td style="text-align: center;">R4<br /> </td> </tr> <tr> <td style="text-align: center;">5<br /> </td> <td style="text-align: center;">32/27<br /> </td> <td style="text-align: right;">294.135<br /> </td> <td style="text-align: center;">g1<br /> </td> </tr> <tr> <td style="text-align: center;">6<br /> </td> <td style="text-align: center;">6/5<br /> </td> <td style="text-align: right;">315.641<br /> </td> <td style="text-align: center;">g2<br /> </td> </tr> <tr> <td style="text-align: center;">7<br /> </td> <td style="text-align: center;">5/4<br /> </td> <td style="text-align: right;">386.314<br /> </td> <td style="text-align: center;">G3<br /> </td> </tr> <tr> <td style="text-align: center;">8<br /> </td> <td style="text-align: center;">81/64<br /> </td> <td style="text-align: right;">407.820<br /> </td> <td style="text-align: center;">G4<br /> </td> </tr> <tr> <td style="text-align: center;">9<br /> </td> <td style="text-align: center;">4/3<br /> </td> <td style="text-align: right;">498.045<br /> </td> <td style="text-align: center;">Ma<br /> </td> </tr> <tr> <td style="text-align: center;">10<br /> </td> <td style="text-align: center;">27/20<br /> </td> <td style="text-align: right;">519.551<br /> </td> <td style="text-align: center;">m2<br /> </td> </tr> <tr> <td style="text-align: center;">11<br /> </td> <td style="text-align: center;">45/32<br /> </td> <td style="text-align: right;">590.224<br /> </td> <td style="text-align: center;">m3<br /> </td> </tr> <tr> <td style="text-align: center;">12<br /> </td> <td style="text-align: center;">729/512<br /> </td> <td style="text-align: right;">611.730<br /> </td> <td style="text-align: center;">m4<br /> </td> </tr> <tr> <td style="text-align: center;">13<br /> </td> <td style="text-align: center;">3/2<br /> </td> <td style="text-align: right;">701.955<br /> </td> <td style="text-align: center;">Pa<br /> </td> </tr> <tr> <td style="text-align: center;">14<br /> </td> <td style="text-align: center;">128/81<br /> </td> <td style="text-align: right;">792.180<br /> </td> <td style="text-align: center;">d1<br /> </td> </tr> <tr> <td style="text-align: center;">15<br /> </td> <td style="text-align: center;">8/5<br /> </td> <td style="text-align: right;">813.686<br /> </td> <td style="text-align: center;">d2<br /> </td> </tr> <tr> <td style="text-align: center;">16<br /> </td> <td style="text-align: center;">5/3<br /> </td> <td style="text-align: right;">884.359<br /> </td> <td style="text-align: center;">D3<br /> </td> </tr> <tr> <td style="text-align: center;">17<br /> </td> <td style="text-align: center;">27/16<br /> </td> <td style="text-align: right;">905.865<br /> </td> <td style="text-align: center;">D4<br /> </td> </tr> <tr> <td style="text-align: center;">18<br /> </td> <td style="text-align: center;">16/9<br /> </td> <td style="text-align: right;">996.090<br /> </td> <td style="text-align: center;">n1<br /> </td> </tr> <tr> <td style="text-align: center;">19<br /> </td> <td style="text-align: center;">9/5<br /> </td> <td style="text-align: right;">1017.596<br /> </td> <td style="text-align: center;">n2<br /> </td> </tr> <tr> <td style="text-align: center;">20<br /> </td> <td style="text-align: center;">15/8<br /> </td> <td style="text-align: right;">1088.269<br /> </td> <td style="text-align: center;">N3<br /> </td> </tr> <tr> <td style="text-align: center;">21<br /> </td> <td style="text-align: center;">243/128<br /> </td> <td style="text-align: right;">1109.775<br /> </td> <td style="text-align: center;">N4<br /> </td> </tr> <tr> <td style="text-align: center;">22<br /> </td> <td style="text-align: center;">2/1<br /> </td> <td style="text-align: right;">1200.000<br /> </td> <td style="text-align: center;">Sa<br /> </td> </tr> </table> <br /> A = 256/243 (90.225 cents)<br /> b = 81/80 (21.506 cents)<br /> c = 25/24 (70.672 cents)<br /> <br /> 9/8 = A+2b+c<br /> 4/3 = 3A+4b+2c<br /> 2/1 = 7A+10b+5c<br /> <br /> <table class="wiki_table"> <tr> <td style="text-align: center;"><strong>interval</strong><br /> </td> <td style="text-align: center;"><strong>ratio</strong><br /> </td> <td style="text-align: center;"><strong>step size</strong><br /> </td> </tr> <tr> <td style="text-align: center;">1-2<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: center;">A<br /> </td> </tr> <tr> <td style="text-align: center;">2-3<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">3-4<br /> </td> <td style="text-align: center;">25/24<br /> </td> <td style="text-align: center;">c<br /> </td> </tr> <tr> <td style="text-align: center;">4-5<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">5-6<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: center;">A<br /> </td> </tr> <tr> <td style="text-align: center;">6-7<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">7-8<br /> </td> <td style="text-align: center;">25/24<br /> </td> <td style="text-align: center;">c<br /> </td> </tr> <tr> <td style="text-align: center;">8-9<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">9-10<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: center;">A<br /> </td> </tr> <tr> <td style="text-align: center;">10-11<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">11-12<br /> </td> <td style="text-align: center;">25/24<br /> </td> <td style="text-align: center;">c<br /> </td> </tr> <tr> <td style="text-align: center;">12-13<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">13-14<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: center;">A<br /> </td> </tr> <tr> <td style="text-align: center;">14-15<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: center;">A<br /> </td> </tr> <tr> <td style="text-align: center;">15-16<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">16-17<br /> </td> <td style="text-align: center;">25/24<br /> </td> <td style="text-align: center;">c<br /> </td> </tr> <tr> <td style="text-align: center;">17-18<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">18-19<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: center;">A<br /> </td> </tr> <tr> <td style="text-align: center;">19-20<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">20-21<br /> </td> <td style="text-align: center;">25/24<br /> </td> <td style="text-align: center;">c<br /> </td> </tr> <tr> <td style="text-align: center;">21-22<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td style="text-align: center;">b<br /> </td> </tr> <tr> <td style="text-align: center;">22-1<br /> </td> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: center;">A<br /> </td> </tr> </table> <br /> <br /> all modes:<br /> <table class="wiki_table"> <tr> <td><tt> Abcb AbcbAbcbA AbcbAbcbA </tt><br /> </td> <td><tt> AbcbAbcbA bcbA AbcbAbcbA </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><tt> bcbA bcbAbcbAA bcbAbcbAA </tt><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><tt> cbAb cbAbcbAAb cbAbcbAAb </tt><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><tt> bAbc bAbcbAAbc bAbcbAAbc </tt><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><tt> Abcb AbcbAAbcb AbcbAAbcb </tt><br /> </td> <td><br /> </td> <td><tt> AbcbAbcbA AbcbAbcbA Abcb </tt><br /> </td> </tr> <tr> <td><tt> bcbA bcbAAbcbA bcbAAbcbA </tt><br /> </td> <td><br /> </td> <td><tt> bcbAbcbAA bcbAbcbAA bcbA </tt><br /> </td> </tr> <tr> <td><tt> cbAb cbAAbcbAb cbAAbcbAb </tt><br /> </td> <td><br /> </td> <td><tt> cbAbcbAAb cbAbcbAAb cbAb </tt><br /> </td> </tr> <tr> <td><tt> bAbc bAAbcbAbc bAAbcbAbc </tt><br /> </td> <td><br /> </td> <td><tt> bAbcbAAbc bAbcbAAbc bAbc </tt><br /> </td> </tr> <tr> <td><tt> Abcb AAbcbAbcb AAbcbAbcb </tt><br /> </td> <td><br /> </td> <td><tt> AbcbAAbcb AbcbAAbcb Abcb </tt><br /> </td> </tr> <tr> <td><tt> bcbA AbcbAbcbA AbcbAbcbA </tt><br /> </td> <td><br /> </td> <td><tt> bcbAAbcbA bcbAAbcbA bcbA </tt><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><tt> cbAAbcbAb cbAAbcbAb cbAb </tt><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><tt> bAAbcbAbc bAAbcbAbc bAbc </tt><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><tt> AAbcbAbcb AAbcbAbcb Abcb </tt><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> AbcbAbcbA Abcb AbcbAbcbA </tt><br /> </td> <td><tt> AbcbAbcbA AbcbAbcbA bcbA </tt><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> bcbAbcbAA bcbA bcbAbcbAA </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> cbAbcbAAb cbAb cbAbcbAAb </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> bAbcbAAbc bAbc bAbcbAAbc </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> AbcbAAbcb Abcb AbcbAAbcb </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> bcbAAbcbA bcbA bcbAAbcbA </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> cbAAbcbAb cbAb cbAAbcbAb </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> bAAbcbAbc bAbc bAAbcbAbc </tt><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><tt> AAbcbAbcb Abcb AAbcbAbcb </tt><br /> </td> <td><br /> </td> </tr> </table> <br /> <br /> lattice:<br /> <!-- ws:start:WikiTextCodeRule:0: <pre class="text"> R3 &#45;- D3 &#45;- G3 &#45;- N3 &#45;- m3<br/> | | | | |<br/> r1 &#45;- d1 &#45;- g1 &#45;- n1 &#45;- Ma &#45;- Sa &#45;- Pa &#45;- R4 &#45;- D4 &#45;- G4 &#45;- N4 &#45;- m4<br/> | | | | |<br/> r2 &#45;- d2 &#45;- g2 &#45;- n2 &#45;- m2<br/>5<br/>|<br/>1 &#45;- 3<br/> 10 5 5 15 45<br/> / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- /<br/> 9 3 4 8 32<br/> | | | | |<br/> 256 128 32 16 4 1 3 9 27 81 243 729<br/> / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- /<br/> 243 81 27 9 3 1 2 8 16 64 128 512<br/> | | | | |<br/> 16 8 6 9 27<br/> / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- / &#45;&#45;- /<br/> 15 5 5 5 20</pre> --> <style type="text/css"><!-- /** * GeSHi (C) 2004 - 2007 Nigel McNie, 2007 - 2008 Benny Baumann * (http://qbnz.com/highlighter/ and http://geshi.org/) */ .text {font-family:monospace;} .text .imp {font-weight: bold; color: red;} .text span.xtra { display:block; } --> </style><pre class="text"> R3 -- D3 -- G3 -- N3 -- m3 | | | | | r1 -- d1 -- g1 -- n1 -- Ma -- Sa -- Pa -- R4 -- D4 -- G4 -- N4 -- m4 | | | | | r2 -- d2 -- g2 -- n2 -- m2 5 | 1 -- 3 10 5 5 15 45 / --- / --- / --- / --- / 9 3 4 8 32 | | | | | 256 128 32 16 4 1 3 9 27 81 243 729 / --- / --- / --- / --- / --- / --- / --- / --- / --- / --- / --- / 243 81 27 9 3 1 2 8 16 64 128 512 | | | | | 16 8 6 9 27 / --- / --- / --- / --- / 15 5 5 5 20</pre> <!-- ws:end:WikiTextCodeRule:0 --><br /> <br /> This scale could be considered a detempering of the following OTC scales with two step sizes:<br /> <br /> <a class="wiki_link" href="/OTC%2017L%205s">OTC 17L+5s</a> (A=L, b=L, c=s)<br /> superpyth MOS<br /> <tt> AbcbAbcbAbcbAAbcbAbcbA </tt><br /> <tt> LLsLLLsLLLsLLLLsLLLsLL </tt><br /> <br /> <a class="wiki_link" href="/OTC%2015L%207s">OTC 15L+7s</a> (A=s, b=L, c=L)<br /> porcupine MODMOS<br /> <tt> AbcbAbcbAbcbAAbcbAbcbA </tt><br /> <tt> sLLLsLLLsLLLssLLLsLLLs </tt><br /> <br /> <a class="wiki_link" href="/OTC%2012L%2010s">OTC 12L+10s</a> (A=L, b=s, c=L)<br /> pajara MODMOS<br /> <tt> AbcbAbcbAbcbAAbcbAbcbA </tt><br /> <tt> LsLsLsLsLsLsLLsLsLsLsL </tt> (form 1)<br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:1:<h3> --><h3 id="toc0"><a name="x--See also"></a><!-- ws:end:WikiTextHeadingRule:1 -->See also</h3> <ul><li><a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales">Gallery of omnitetrachordal scales</a></li></ul><br /> <!-- ws:start:WikiTextHeadingRule:3:<h3> --><h3 id="toc1"><a name="x--References"></a><!-- ws:end:WikiTextHeadingRule:3 -->References</h3> <ul><li>Noted as omnitetrachordal by Paul Erlich; date unknown.</li></ul></body></html>