Hemifourths: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 207243042 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The hemi-fourth interval (around 250 cents) when taken as a generator, and an octave is taken as the generator, a 9-note scale is possible:
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-03-04 04:29:01 UTC</tt>.<br>
: The original revision id was <tt>207243042</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The hemi-fourth interval (around 250 cents) when taken as a generator, and an octave is taken as the generator, a 9-note scale is possible:


LsLsLsLsL
LsLsLsLsL


It is an [[MOSScales|MOS scale]], of [[MOSNamingScheme|type]] "unfair bug", with SEVEN triads, subminor or supermajor. Holy holes. If the generator is around 248-250 cents, we might take this as representing a MOS in [[The Archipelago|barbados temperament]].
It is an [[MOSScales|MOS scale]], of [[MOSNamingScheme|type]] "unfair bug", with SEVEN triads, subminor or supermajor. Holy holes. If the generator is around 248-250 cents, we might take this as representing a MOS in [[The_Archipelago|barbados temperament]].


**The family.**
'''The family.'''


A map of 3 levels of the scale tree between g=1/5 and 1/4
A map of 3 levels of the scale tree between g=1/5 and 1/4
[[image:hemifourths.PNG]]
 
[[File:hemifourths.PNG|alt=hemifourths.PNG|hemifourths.PNG]]


So, to the right of 2/9 lie "fair" 9-note scales, and to the left lie the "unfair" ones. The easy way to think about this: if the generator is closer to 5 in the denominator, then the 5 intervals will be bigger.
So, to the right of 2/9 lie "fair" 9-note scales, and to the left lie the "unfair" ones. The easy way to think about this: if the generator is closer to 5 in the denominator, then the 5 intervals will be bigger.


**Examples.**
'''Examples.'''


voice-leading sketch in 24-EDO's flavor of hemifourths[9]
voice-leading sketch in 24-EDO's flavor of hemifourths[9]
[[file:qt mode chord prog.mp3]]


**Music.**
[[:File:qt_mode_chord_prog.mp3|qt mode chord prog.mp3]]
 
'''Music.'''


[[http://www.soundclick.com/bands/songInfo.cfm?bandID=376205&amp;songID=5327098|Entropy, the Grandfather of Wind]] (broken link. 2011-03-04) in 14-EDO's flavor of hemifourths[9]</pre></div>
[http://www.soundclick.com/bands/songInfo.cfm?bandID=376205&songID=5327098 Entropy, the Grandfather of Wind] (broken link. 2011-03-04) in 14-EDO's flavor of hemifourths[9]
<h4>Original HTML content:</h4>
[[Category:9-tone]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;hemifourths&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The hemi-fourth interval (around 250 cents) when taken as a generator, and an octave is taken as the generator, a 9-note scale is possible:&lt;br /&gt;
[[Category:generator]]
&lt;br /&gt;
[[Category:interval]]
LsLsLsLsL&lt;br /&gt;
&lt;br /&gt;
It is an &lt;a class="wiki_link" href="/MOSScales"&gt;MOS scale&lt;/a&gt;, of &lt;a class="wiki_link" href="/MOSNamingScheme"&gt;type&lt;/a&gt; &amp;quot;unfair bug&amp;quot;, with SEVEN triads, subminor or supermajor. Holy holes. If the generator is around 248-250 cents, we might take this as representing a MOS in &lt;a class="wiki_link" href="/The%20Archipelago"&gt;barbados temperament&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;The family.&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
A map of 3 levels of the scale tree between g=1/5 and 1/4&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:0:&amp;lt;img src=&amp;quot;/file/view/hemifourths.PNG/51824077/hemifourths.PNG&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/hemifourths.PNG/51824077/hemifourths.PNG" alt="hemifourths.PNG" title="hemifourths.PNG" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
So, to the right of 2/9 lie &amp;quot;fair&amp;quot; 9-note scales, and to the left lie the &amp;quot;unfair&amp;quot; ones. The easy way to think about this: if the generator is closer to 5 in the denominator, then the 5 intervals will be bigger.&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;Examples.&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
voice-leading sketch in 24-EDO's flavor of hemifourths[9]&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:1:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/qt%20mode%20chord%20prog.mp3?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@qt mode chord prog.mp3&amp;quot; title=&amp;quot;File: qt mode chord prog.mp3&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/qt%20mode%20chord%20prog.mp3/30686842/qt%20mode%20chord%20prog.mp3" onclick="ws.common.trackFileLink('/file/view/qt%20mode%20chord%20prog.mp3/30686842/qt%20mode%20chord%20prog.mp3');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/audio/mpeg.png" height="32" width="32" alt="qt mode chord prog.mp3" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/qt%20mode%20chord%20prog.mp3/30686842/qt%20mode%20chord%20prog.mp3" onclick="ws.common.trackFileLink('/file/view/qt%20mode%20chord%20prog.mp3/30686842/qt%20mode%20chord%20prog.mp3');" class="filename" title="qt mode chord prog.mp3"&gt;qt mode chord prog.mp3&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/qt%20mode%20chord%20prog.mp3"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/qt%20mode%20chord%20prog.mp3/30686842/qt%20mode%20chord%20prog.mp3"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;2 MB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:1 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;Music.&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.soundclick.com/bands/songInfo.cfm?bandID=376205&amp;amp;songID=5327098" rel="nofollow"&gt;Entropy, the Grandfather of Wind&lt;/a&gt; (broken link. 2011-03-04) in 14-EDO's flavor of hemifourths[9]&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

The hemi-fourth interval (around 250 cents) when taken as a generator, and an octave is taken as the generator, a 9-note scale is possible:

LsLsLsLsL

It is an MOS scale, of type "unfair bug", with SEVEN triads, subminor or supermajor. Holy holes. If the generator is around 248-250 cents, we might take this as representing a MOS in barbados temperament.

The family.

A map of 3 levels of the scale tree between g=1/5 and 1/4

hemifourths.PNG

So, to the right of 2/9 lie "fair" 9-note scales, and to the left lie the "unfair" ones. The easy way to think about this: if the generator is closer to 5 in the denominator, then the 5 intervals will be bigger.

Examples.

voice-leading sketch in 24-EDO's flavor of hemifourths[9]

qt mode chord prog.mp3

Music.

Entropy, the Grandfather of Wind (broken link. 2011-03-04) in 14-EDO's flavor of hemifourths[9]