Jubilismic clan: Difference between revisions

Xenwolf (talk | contribs)
recat
m Update linking
 
(78 intermediate revisions by 10 users not shown)
Line 1: Line 1:
__FORCETOC__
{{Technical data page}}
The '''Jubilismic clan''' tempers out the jubilisma, [[50/49|50/49]], which means [[7/5|7/5]] and [[10/7|10/7]] are identified and the [[Octave|octave]] is divided in two. Doublewide, lemba and diminished are discussed below; others in the clan are pajara, decimal, injera, octokaidecal, hedgehog, bipelog and hexe, which are discussed elsewhere.
The '''jubilismic clan''' tempers out the jubilisma, [[50/49]], which means [[7/5]] and [[10/7]] are both equated to the 600-cent tritone and the [[octave]] is divided in two.  


No-threes [[POTE_tuning|POTE generator]]: 380.840
== Jubilic ==
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave give ~[[7/4]]. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.  


No-threes map: [<2 0 1 1|, <0 0 1 1|]
[[Subgroup]]: 2.5.7


EDOs: [[10edo|10]], [[12edo|12]], [[16edo|16]], [[22edo|22]], [[104edo|104]]
[[Comma list]]: 50/49


=Diminished=
{{Mapping|legend=2| 2 0 1 | 0 1 1 }}
<span style="display: block; text-align: right;">[[:de:Verminderte_Temperaturen|Deutsch]]</span>


Commas: 36/35, 50/49
: sval mapping generators: ~7/5, ~5


[[POTE_tuning|POTE generator]]: ~3/2 = 699.523
{{Mapping|legend=3| 2 0 0 1 | 0 0 1 1 }}


Map: [&lt;4 0 3 5|, &lt;0 1 1 1|]
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 599.6673{{c}}, ~5/4 = 380.6287{{c}} (~8/7 = 219.0386{{c}})
: [[error map]]: {{val| -0.665 -7.016 +10.139 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.0086{{c}} (~8/7 = 219.9914{{c}})
: error map: {{val| 0.000 -6.305 +11.183 }}


EDOs: [[4edo|4]], [[12edo|12]]
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d }}


Badness: 0.0224
[[Badness]] (Sintel): 0.140


==11-limit==
=== Overview to extensions ===
Commas: 36/35, 50/49, 56/55
Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Walid merges ~5/4 and ~4/3 by tempering out [[16/15]].


[[POTE_tuning|POTE generator]]: ~3/2 = 709.109
Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.  


Map: [&lt;4 0 3 5 14|, &lt;0 1 1 1 0|]
Temperaments discussed elsewhere are:  
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]]
* [[Pajara]] (+64/63) → [[Diaschismic family #Pajara|Diaschismic family]]
* ''[[Dubbla]]'' (+78125/73728) → [[Wesley family #Dubbla|Wesley family]]
* ''[[Injera]]'' (+81/80) → [[Meantone family #Injera|Meantone family]]
* ''[[Octokaidecal]]'' (+28/27) → [[Trienstonic clan #Octokaidecal|Trienstonic clan]]
* ''[[Bipelog]]'' (+135/128) → [[Mavila #Bipelog|Mavila family]]
* ''[[Hexe]]'' (+128/125) → [[Augmented family #Hexe|Augmented family]]
* ''[[Hedgehog]]'' (+250/243) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Crepuscular]]'' (+4375/4374) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Byhearted]]'' (+19683/19208) → [[Tetracot family #Byhearted|Tetracot family]]


EDOs: [[4edo|4]], [[8edo|8]], [[12edo|12]], [[44edo|44]]
Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.


Badness: 0.0221
== Lemba ==
{{Main| Lemba }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lemba]].''


==13-limit==
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the {{nowrap| 10 & 16 }} temperament; its [[ploidacot]] is diploid tricot.
Commas: 36/35, 40/39, 50/49, 66/65


POTE generator: ~3/2 = 713.773
[[Subgroup]]: 2.3.5.7


Map: [&lt;4 0 3 5 14 15|, &lt;0 1 1 1 0 0|]
[[Comma list]]: 50/49, 525/512


EDOs: 4, 8d, 12f, 20cdef
{{Mapping|legend=1| 2 2 5 6 | 0 3 -1 -1 }}


Badness: 0.0195
: mapping generators: ~7/5, ~8/7


==Demolished==
[[Optimal tuning]]s:
Commas: 36/35, 45/44, 50/49
* [[WE]]: ~7/5 = 601.4623{{c}}, ~8/7 = 232.6544{{c}}
: [[error map]]: {{val| +2.925 -1.067 -11.656 +7.294 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~8/7 = 232.2655{{c}}
: error map: {{val| 0.000 -5.158 -18.579 -1.091 }}


POTE generator: ~3/2 = 689.881
{{Optimal ET sequence|legend=1| 10, 16, 26, 36c, 62c }}


Map: [&lt;4 0 3 5 -5|, &lt;0 1 1 1 3|]
[[Badness]] (Sintel): 1.57


EDOs: 12, 28, 40de
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.0266
Comma list: 45/44, 50/49, 385/384


==Hemidim==
Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }}
Commas: 36/35, 50/49, 125/121


POTE generator: ~12/11 = 101.679
Optimal tunings:  
* WE: ~7/5 = 601.1769{{c}}, ~8/7 = 231.4273{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1781{{c}}


Map: [&lt;4 1 4 6 6|, &lt;0 2 2 2 3|]
{{Optimal ET sequence|legend=0| 10, 16, 26 }}


EDOs: 12, 20b
Badness (Sintel): 1.37


Badness: 0.0550
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


=Doublewide=
Comma list: 45/44, 50/49, 65/64, 78/77
Commas: 50/49, 875/864


[[POTE_tuning|POTE generator]]: ~6/5 = 325.719
Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }}


Map: [&lt;2 1 3 4|, &lt;0 4 3 3|]
Optimal tunings:  
* WE: ~7/5 = 601.1939{{c}}, ~8/7 = 231.4261{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1617{{c}}


EDOs: [[18edo|18]], [[22edo|22]], [[26edo|26edo]], [[48edo|48]], [[70edo|70c]]
{{Optimal ET sequence|legend=0| 10, 16, 26 }}


Badness: 0.0435
Badness (Sintel): 1.05


==11-limit==
== Astrology ==
Commas: 50/49, 99/98, 875/864
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the {{nowrap| 16 & 22 }} temperament; its ploidacot is diploid pentacot.


[[POTE_tuning|POTE generator]]: ~6/5 = 325.548
[[Subgroup]]: 2.3.5.7


Map: [&lt;2 1 3 4 8|, &lt;0 4 3 3 -2|]
[[Comma list]]: 50/49, 3125/3072


EDOs: [[18edo|18]], [[22edo|22]], [[48edo|48]], [[70edo|70c]], [[118edo|118cd]]
{{Mapping|legend=1| 2 0 4 5 | 0 5 1 1 }}


Badness: 0.0321
: mapping geenerators: ~7/5, ~5/4


==Fleetwood==
[[Optimal tuning]]s:
Commas: 50/49, 55/54, 176/175
* [[WE]]: ~7/5 = 599.6999{{c}}, ~5/4 = 380.3881{{c}} (~8/7 = 219.3119{{c}})
: [[error map]]: {{val| -0.600 -0.015 -7.126 +10.062 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5123{{c}} (~8/7 = 219.4877{{c}})
: error map: {{val| 0.000 +0.606 -5.801 +11.686 }}


POTE generator: ~6/5 = 327.038
{{Optimal ET sequence|legend=1| 6, 16, 22, 60d }}


Map: [&lt;2 1 3 4 2|, &lt;0 4 3 3 9|]
[[Badness]] (Sintel): 2.09


EDOs: 22, 26e
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.0352
Comma list: 50/49, 121/120, 176/175


===13-limit===
Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }}
Commas: 50/49, 55/54, 65/63, 176/175


POTE generator: ~6/5 = 327.841
Optimal tunings:
* WE: ~7/5 = 600.0538{{c}}, ~5/4 = 380.5640{{c}} (~8/7 = 219.4897{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5419{{c}} (~8/7 = 219.4581{{c}})


Map: [&lt;2 1 3 4 2 3|, &lt;0 4 3 3 9 8|]
{{Optimal ET sequence|legend=0| 6, 16, 22 }}


EDOs: 22, 84bdf
Badness (Sintel): 1.29


Badness: 0.0318
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


==Cavalier==
Comma list: 50/49, 65/64, 78/77, 121/120
Commas: 45/44, 50/49, 875/864


POTE generator: ~6/5 = 323.427
Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }}


Map: [&lt;2 1 3 4 1|, &lt;0 4 3 3 11|]
Optimal tunings:  
* WE: ~7/5 = 600.7886{{c}}, ~5/4 = 380.2857{{c}} (~8/7 = 220.5028{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.9119{{c}} (~8/7 = 220.0881{{c}})


EDOs: 26
{{Optimal ET sequence|legend=0| 6, 16, 22, 38f }}


Badness: 0.0529
Badness (Sintel): 1.42


===13-limit===
; Music
Commas: 45/44, 50/49, 78/77, 325/324
* [https://soundcloud.com/joelgranttaylor/astrology-percussion-quintet ''Astrology Percussion Quintet No 1'']{{dead link}} [http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/AstrologyPercQuintet1_c.mp3 play]{{dead link}} by [[Joel Taylor]]


POTE generator: ~6/5 = 323.396
==== Horoscope ====
Subgroup: 2.3.5.7.11.13


Map: [&lt;2 1 3 4 1 2|, &lt;0 4 3 3 11 10|]
Comma list: 50/49, 66/65, 105/104, 121/120


EDOs: 26
Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }}


Badness: 0.0350
Optimal tunings:  
* WE: ~7/5 = 599.8927{{c}}, ~5/4 = 379.7688{{c}} (~8/7 = 220.1239{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.8117{{c}} (~8/7 = 220.1883{{c}})


=Lemba=
{{Optimal ET sequence|legend=0| 6f, 16, 22f, 38 }}
Commas: 50/49, 525/512


[[POTE_tuning|POTE generator]]: ~8/7 = 232.089
Badness (Sintel): 1.46


Map: [&lt;2 2 5 6|, &lt;0 3 -1 -1|]
== Walid ==
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in [[father]]. Its ploidacot is diploid monocot.


EDOs: [[10edo|10]], [[16edo|16]], [[26edo|26]], [[62edo|62]]
[[Subgroup]]: 2.3.5.7


Badness: 0.0622
[[Comma list]]: 16/15, 50/49


==11-limit==
{{Mapping|legend=1| 2 0 8 9 | 0 1 -1 -1 }}
Commas: 45/44, 50/49, 385/384


POTE generator: ~8/7 = 230.974
: mapping generators: ~7/5, ~3


Map: [&lt;2 2 5 6 5|, &lt;0 3 -1 -1 5|]
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 589.0384{{c}}, ~3/2 = 735.7242{{c}} (~15/14 = 146.6857{{c}})
: [[error map]]: {{val| -21.923 +11.846 +12.193 +18.719 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 750.4026{{c}} (~15/14 = 150.4026{{c}})
: error map: {{val| 0.000 +48.448 +63.284 +80.771 }}


EDOs: 10, 16, 26
{{Optimal ET sequence|legend=1| 2, 6, 8d }}


Badness: 0.0416
[[Badness]] (Sintel): 1.24


==13-limit==
=== 11-limit ===
Commas: 45/44, 50/49, 65/64, 78/77
Subgroup: 2.3.5.7.11


POTE generator: ~8/7 = 230.966
Comma list: 16/15, 22/21, 50/49


Map: [&lt;2 2 5 6 5 7|, &lt;0 3 -1 -1 5 1|]
Mapping: {{mapping| 2 0 8 9 7 | 0 1 -1 -1 0 }}


EDOs: 10, 16, 26
Optimal tunings:  
* WE: ~7/5 = 589.7684{{c}}, ~3/2 = 736.9708{{c}} (~12/11 = 147.2023{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 750.5221{{c}} (~12/11 = 150.5221{{c}})


Badness: 0.0255
{{Optimal ET sequence|legend=0| 2, 6, 8d }}


=Vigintiduo=
Badness (Sintel): 0.965
Commas: 50/49, 64/63, 245/243


POTE generator: ~11/8 = 557.563
== Antikythera ==
Named by [[Gene Ward Smith]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101481.html Yahoo! Tuning Group | ''Antikythera'']</ref>, antikythera is every other step of [[pajara]].  


Map: [&lt;22 35 51 62 0|, &lt;0 0 0 0 1|]
[[Subgroup]]: 2.9.5.7


EDOs: 22, 66de, 88bde, 110bd, 198bcdde
[[Comma list]]: 50/49, 64/63


Badness: 0.0484
{{Mapping|legend=2| 2 0 11 12 | 0 1 -1 -1 }}


=Vigin=
: mapping generators: ~7/5, ~9
Commas: 50/49, 55/54, 64/63, 99/98


POTE generator: ~13/8 = 844.624
{{Mapping|legend=3| 2 3 5 6 | 0 1/2 -1 -1 }}


Map: [&lt;22 35 51 62 76 0|, &lt;0 0 0 0 0 1|]
: [[gencom]]: [7/5 8/7; 50/49 64/63]


EDOs: 22, 44
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 598.8483{{c}}, ~9/8 = 213.6844{{c}}
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~9/8 = 214.6875{{c}}
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}


Badness: 0.0298
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 28 }}


=Duodecim=
[[Badness]] (Sintel): 0.253
Commas: 36/35, 50/49, 64/63


POTE generator: ~11/8 = 565.023
== Doublewide ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Doublewide (5-limit)]].''


Map: [&lt;12 19 28 34 0|, &lt;0 0 0 0 1|]
Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the {{nowrap| 22 & 26 }} temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. [[48edo]] makes for an excellent tuning.


EDOs: 12, 24d, 36d
[[Subgroup]]: 2.3.5.7


Badness: 0.030536
[[Comma list]]: 50/49, 875/864


=Crepuscular=
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }}
Commas: 50/49, 4375/4374


POTE generator: ~27/25 = 140.349
: mapping generators: ~7/5, ~6/5


Map: [&lt;2 2 3 4|, &lt;0 5 7 7|]
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 600.0365{{c}}, ~6/5 = 325.7389{{c}} (~7/6 = 274.2975{{c}})
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~6/5 = 325.7353{{c}} (~7/6 = 274.2647{{c}})
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}


Wedgie: &lt;&lt;10 14 14 -1 -6 -7||
{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48 }}


EDOs: 26, 34d, 60d, 94d
[[Badness]] (Sintel): 1.10


Badness: 0.0867
=== 11-limit ===
Subgroup: 2.3.5.7.11


==11-limit==
Comma list: 50/49, 99/98, 385/384
Commas: 50/49, 99/98, 1944/1925


POTE generator: ~12/11 = 140.587
Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}


Map: [&lt;2 2 3 4 6|, &lt;0 5 7 7 4|]
Optimal tunings:  
* WE: ~7/5 = 600.1818{{c}}, ~6/5 = 325.6434{{c}} (~7/6 = 274.5384{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 325.5854{{c}} (~7/6 = 274.4146{{c}})


EDOs: 26, 34d, 60d, 94de
{{Optimal ET sequence|legend=0| 4, 18, 22, 48 }}


Badness: 0.0408
Badness (Sintel): 1.06


==13-limit==
=== Fleetwood ===
Commas: 50/49, 78/77, 99/98, 144/143
Subgroup: 2.3.5.7.11


POTE generator: ~12/11 = 140.554
Comma list: 50/49, 55/54, 176/175


Map: [&lt;2 2 3 4 6 6|, &lt;0 5 7 7 4 6|]
Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }}


EDOs: 26, 34d, 60d, 94de
Optimal tunings:  
* WE: ~7/5 = 599.6049{{c}}, ~6/5 = 326.8229{{c}} (~7/6 = 272.7819{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 326.8890{{c}} (~7/6 = 273.1110{{c}})


Badness: 0.0244
{{Optimal ET sequence|legend=0| 4e, …, 18e, 22 }}


=Bipyth=
Badness (Sintel): 1.16
Commas: 50/49, 20480/19683


POTE generator: ~3/2 = 709.437
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Map: [&lt;2 0 -24 -23|, &lt;0 1 9 9|]
Comma list: 50/49, 55/54, 65/63, 176/175


Wedgie: &lt;&lt;2 18 18 24 23 -9||
Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }}


Badness: 0.1650
Optimal tunings:  
* WE: ~7/5 = 599.5482{{c}}, ~6/5 = 327.5939{{c}} (~7/6 = 271.9543{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 327.6706{{c}} (~7/6 = 272.3294{{c}})


==11-limit==
{{Optimal ET sequence|legend=0| 4ef, …, 18e, 22 }}
Commas: 50/49, 121/120, 896/891


POTE generator: ~3/2 = 709.310
Badness (Sintel): 1.32


Map: [&lt;2 0 -24 -23 -9|, &lt;0 1 9 9 5|]
=== Cavalier ===
Subgroup: 2.3.5.7.11


EDOs: 22
Comma list: 45/44, 50/49, 875/864


Badness: 0.0709
Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }}


=Elvis=
Optimal tunings:
Comma: 36905625/33554432
* WE: ~7/5 = 600.9467{{c}}, ~6/5 = 323.9369{{c}} (~7/6 = 277.0098{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.7272{{c}} (~7/6 = 276.2728{{c}})


POTE generator: ~45/32 = 554.546
{{Optimal ET sequence|legend=0| 4e, 22e, 26 }}


Map: [&lt;2 1 10|, &lt;0 2 -5|]
Badness (Sintel): 1.75


EDOs: 24c, 26, 80bc, 106bc, 132bc
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Badness: 0.8840
Comma list: 45/44, 50/49, 78/77, 325/324


==7-limit==
Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }}
Commas: 50/49, 8505/8192


POTE generator: ~45/32 = 553.721
Optimal tunings:  
* WE: ~7/5 = 600.9537{{c}}, ~6/5 = 323.9097{{c}} (~7/6 = 277.0440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.6876{{c}} (~7/6 = 276.3124{{c}})


Map: [&lt;2 1 10 11|, &lt;0 2 -5 -5|]
{{Optimal ET sequence|legend=0| 4ef, 22ef, 26 }}


Wedgie: &lt;&lt;4 -10 -10 -25 -27 5||
Badness (Sintel): 1.45


EDOs: 24c, 26
== Elvis ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Elvis]].''


Badness: 0.1415
Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[26edo]] makes for an obvious tuning.  


==11-limit==
[[Subgroup]]: 2.3.5.7
Commas: 45/44, 50/49, 1344/1331


POTE generator: ~11/8 = 553.882
[[Comma list]]: 50/49, 8505/8192


Map: [&lt;2 1 10 11 8|, &lt;0 2 -5 -5 -1|]
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }}


EDOs: 24c, 26
: mapping generators: ~7/5, ~64/45


Badness: 0.0632
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 601.6846{{c}}, ~64/45 = 648.0937{{c}} (~64/63 = 46.4091{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~64/45 = 646.0539{{c}} (~64/63 = 46.0539{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}


==13-limit==
{{Optimal ET sequence|legend=1| 2, 24c, 26 }}
Commas: 45/44, 50/49, 78/77, 1053/1024


POTE generator: ~11/8 = 553.892
[[Badness]] (Sintel): 3.58


Map: [&lt;2 1 10 11 8 16|, &lt;0 2 -5 -5 -1 -8|]
=== 11-limit ===
Subgroup: 2.3.5.7.11


EDOs: 26
Comma list: 45/44, 50/49, 1344/1331


Badness: 0.0440
Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }}


[[Category:Theory]]
Optimal tunings:
[[Category:Jubilismic]]
* WE: ~7/5 = 601.2186{{c}}, ~16/11 = 647.4300{{c}} (~56/55 = 46.2114{{c}})
[[Category:Clan]]
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9681{{c}} (~56/55 = 45.9681{{c}})
 
{{Optimal ET sequence|legend=0| 2, 24c, 26 }}
 
Badness (Sintel): 2.09
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 45/44, 50/49, 78/77, 1053/1024
 
Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }}
 
Optimal tunings:
* WE: ~7/5 = 601.2206{{c}}, ~16/11 = 647.4219{{c}} (~56/55 = 46.2013{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9362{{c}} (~56/55 = 45.9362{{c}})
 
{{Optimal ET sequence|legend=0| 2f, 24cf, 26 }}
 
Badness (Sintel): 1.82
 
== Comic ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Comic (5-limit)]].''
 
Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[22edo]] makes for an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 2240/2187
 
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }}
 
: mapping generators: ~7/5, ~40/27
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.9554{{c}}, ~40/27 = 653.5596{{c}} (~28/27 = 54.6042{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~40/27 = 654.3329{{c}} (~28/27 = 54.3329{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 2cd, …, 20cd, 22 }}
 
[[Badness]] (Sintel): 2.14
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 99/98, 2662/2625
 
Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }}
 
Optimal tunings:
* WE: ~7/5 = 598.8161{{c}}, ~22/15 = 653.8909{{c}} (~28/27 = 55.0747{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.7898{{c}} (~28/27 = 54.7898{{c}})
 
{{Optimal ET sequence|legend=0| 2cde, …, 20cde, 22 }}
 
Badness (Sintel): 1.49
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 65/63, 99/98, 968/945
 
Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }}
 
Optimal tunings:
* WE: ~7/5 = 600.1030{{c}}, ~22/15 = 654.5470{{c}} (~28/27 = 54.4440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.4665{{c}} (~28/27 = 54.4665{{c}})
 
{{Optimal ET sequence|legend=0| 2cde, 20cde, 22 }}
 
Badness (Sintel): 1.71
 
== Bipyth ==
Bipyth tempers out the 5-limit [[superpyth comma]], 20480/19683, making it an alternative extension of 5-limit [[superpyth]]. Its ploidacot is diploid monocot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 20480/19683
 
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }}
 
: mapping generators: ~7/5, ~3
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.7533{{c}}, ~3/2 = 707.9630{{c}} (~15/14 = 109.2098{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1579{{c}} (~15/14 = 109.1579{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}
 
[[Badness]] (Sintel): 4.18
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 121/120, 896/891
 
Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }}
 
Optimal tunings:
* WE: ~7/5 = 599.2296{{c}}, ~3/2 = 708.3992{{c}} (~15/14 = 109.1697{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1395{{c}} (~15/14 = 109.1395{{c}})
 
{{Optimal ET sequence|legend=0| 10cd, 12cde, 22 }}
 
Badness (Sintel): 2.34
 
== Sedecic ==
Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 546875/524288
 
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }}
 
[[Optimal tuning]]s:
* [[WE]]: ~128/125 = 75.0539{{c}}, ~3/2 = 701.0578{{c}} (~525/512 = 25.5726{{c}})
: [[error map]]: {{val| 0.000 0.000 -11.314 +6.174 }}
* [[CWE]]: ~128/125 = 75.0000{{c}}, ~3/2 = 700.8957{{c}} (~525/512 = 25.8957{{c}})
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }}
 
{{Optimal ET sequence|legend=1| 16, 32, 48 }}
 
[[Badness]] (Sintel): 6.73
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 385/384, 1331/1323
 
Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }}
 
Optimal tunings:
* WE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.7810{{c}} (~45/44 = 25.3476{{c}})
* CWE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.6780{{c}} (~45/44 = 25.6780{{c}})
 
{{Optimal ET sequence|legend=0| 16, 32, 48 }}
 
Badness (Sintel): 3.07
 
== Notes ==
 
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Jubilismic clan| ]] <!-- main article -->
[[Category:Jubilismic| ]] <!-- key article -->
[[Category:Rank 2]]