72edo: Difference between revisions
Tags: Mobile edit Mobile web edit |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(97 intermediate revisions by 16 users not shown) | |||
Line 1: | Line 1: | ||
{{interwiki | {{interwiki | ||
| de = | | de = 72-EDO | ||
| en = 72edo | | en = 72edo | ||
| es = | | es = | ||
Line 7: | Line 7: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{Wikipedia|72 equal temperament}} | {{Wikipedia|72 equal temperament}} | ||
{{ED intro}} | |||
Composers that used 72edo include [[Ivan Wyschnegradsky]], [[Julián Carrillo]] (who is better associated with [[96edo]]), [[Ezra Sims]], [[ | Each step of 72edo is called a ''[[morion]]'' (plural ''moria)''. This produces a twelfth-tone tuning, with the whole tone measuring 200{{c}}, the same as in [[12edo]]. 72edo is also a superset of [[24edo]], a common and standard tuning of [[Arabic, Turkish, Persian music|Arabic music]], and has itself been used to tune Turkish music. | ||
Composers that used 72edo include [[Ivan Wyschnegradsky]], [[Julián Carrillo]] (who is better associated with [[96edo]]), [[Georg Friedrich Haas]], [[Ezra Sims]], [[Rick Tagawa]], [[James Tenney]], and the jazz musician [[Joe Maneri]]. | |||
== Theory == | == Theory == | ||
72edo approximates [[11-limit]] [[just intonation]] exceptionally well | 72edo approximates [[11-limit]] [[just intonation]] exceptionally well. It is [[consistent]] in the [[17-odd-limit]] and is the ninth [[zeta integral edo]]. It is the second edo (after [[58edo|58]]) to be [[consistency|distinctly consistent]] in the [[11-odd-limit]], the first edo to be [[consistency|consistent to distance 2]] in the 11-odd-limit, and the first edo to be consistent in the 12- and 13-[[odd prime sum limit|odd-prime-sum-limit]]. | ||
The octave, fifth and fourth are the same size as they would be in 12edo, 72, 42 and 30 steps respectively, but the classic major third ([[5/4]]) measures 23 steps, not 24, and other [[5-limit]] major intervals are one step flat of 12edo while minor ones are one step sharp. The septimal minor seventh ([[7/4]]) is 58 steps, while the undecimal semiaugmented fourth ([[11/8]]) is 33. | |||
72et is the only 11-limit regular temperament which treats harmonics 24 to 28 as being equidistant in pitch, splits [[25/24]] into two equal [[49/48]][[~]][[50/49]]'s, and splits [[28/27]] into two equal [[55/54]]~[[56/55]]'s. It is also an excellent tuning for [[miracle]] temperament, especially the 11-limit version, and the related rank-3 temperament [[prodigy]], and is a good tuning for other temperaments and scales, including [[wizard]], [[harry]], [[catakleismic]], [[compton]], [[unidec]] and [[tritikleismic]]. | |||
The 13th harmonic (octave reduced) is so closely mapped on [[acoustic phi]] that 72edo could be treated as a 2.3.5.7.11.ϕ.17 temperament. | The 13th harmonic (octave reduced) is so closely mapped on [[acoustic phi]] that 72edo could be treated as a 2.3.5.7.11.ϕ.17 temperament. | ||
72edo is the smallest multiple of 12edo that (just barely) has another diatonic fifth, 43\72, an extremely hard diatonic fifth suitable for a 5edo [[circulating temperament]]. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|72|columns=11}} | {{Harmonics in equal|72|columns=9}} | ||
{{Harmonics in equal|72|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 72edo (continued)}} | |||
=== Octave stretch === | |||
72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly [[stretched and compressed tuning|stretching the octave]], using tunings such as [[114edt]] or [[186ed6]]. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies. | |||
=== Subsets and supersets === | |||
Since 72 factors into primes as {{nowrap| 2<sup>3</sup> × 3<sup>2</sup> }}, 72edo has subset edos {{EDOs| 2, 3, 4, 6, 8, 9, 12, 18, 24, and 36 }}. [[144edo]], which doubles it, provides a possible correction to its approximate harmonic 13. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-all right-2 left-3" | {| class="wikitable center-all right-2 left-3" | ||
|- | |- | ||
! | ! # | ||
! Cents | ! Cents | ||
! Approximate | ! Approximate ratios<ref group="note">{{sg|limit=19-limit}} For lower limits see [[Table of 72edo intervals]].</ref> | ||
! colspan="3" | [[Ups and | ! colspan="3" | [[Ups and downs notation]] | ||
! colspan="3" | [[SKULO interval names|SKULO interval names and notation]] | |||
! (K, S, U) | |||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.0 | ||
| 1/1 | | 1/1 | ||
| P1 | | P1 | ||
| perfect unison | | perfect unison | ||
| D | |||
| P1 | |||
| perfect unison | |||
| D | |||
| D | | D | ||
|- | |- | ||
| 1 | | 1 | ||
| 16. | | 16.7 | ||
| 81/80 | | 81/80, 91/90, 99/98, 100/99, 105/104 | ||
| ^1 | | ^1 | ||
| up unison | | up unison | ||
| ^D | | ^D | ||
| K1, L1 | |||
| comma-wide unison, large unison | |||
| KD, LD | |||
| KD | |||
|- | |- | ||
| 2 | | 2 | ||
| 33. | | 33.3 | ||
| 45/44, 64/63 | | 45/44, 49/48, 50/49, 55/54, 64/63 | ||
| ^^ | | ^^ | ||
| dup unison | | dup unison | ||
| ^^D | | ^^D | ||
| S1, O1 | |||
| super unison, on unison | |||
| SD, OD | |||
| SD | |||
|- | |- | ||
| 3 | | 3 | ||
| 50. | | 50.0 | ||
| 33/32 | | 33/32, 36/35, 40/39 | ||
| ^<sup>3</sup>1, | | ^<sup>3</sup>1, v<sup>3</sup>m2 | ||
| trup unison, | | trup unison, trudminor 2nd | ||
| ^<sup>3</sup>D, | | ^<sup>3</sup>D, v<sup>3</sup>Eb | ||
| U1, H1, hm2 | |||
| uber unison, hyper unison, hypominor 2nd | |||
| UD, HD, uEb | |||
| UD, uEb | |||
|- | |- | ||
| 4 | | 4 | ||
| 66. | | 66.7 | ||
| 25/24 | | 25/24, 26/25, 27/26, 28/27 | ||
| vvm2 | | vvm2 | ||
| dudminor 2nd | | dudminor 2nd | ||
| vvEb | | vvEb | ||
| kkA1, sm2 | |||
| classic aug unison, subminor 2nd | |||
| kkD#, sEb | |||
| sD#, (kkD#), sEb | |||
|- | |- | ||
| 5 | | 5 | ||
| 83. | | 83.3 | ||
| 21/20 | | 20/19, 21/20, 22/21 | ||
| vm2 | | vm2 | ||
| downminor 2nd | | downminor 2nd | ||
| vEb | | vEb | ||
| kA1, lm2 | |||
| comma-narrow aug unison, little minor 2nd | |||
| kD#, lEb | |||
| kD#, kEb | |||
|- | |- | ||
| 6 | | 6 | ||
| 100. | | 100.0 | ||
| | | 17/16, 18/17, 19/18 | ||
| m2 | |||
| minor 2nd | |||
| Eb | |||
| m2 | | m2 | ||
| minor 2nd | | minor 2nd | ||
| Eb | |||
| Eb | | Eb | ||
|- | |- | ||
| 7 | | 7 | ||
| 116. | | 116.7 | ||
| 15/14, 16/15 | | 15/14, 16/15 | ||
| ^m2 | | ^m2 | ||
| upminor 2nd | | upminor 2nd | ||
| ^Eb | | ^Eb | ||
| Km2 | |||
| classic minor 2nd | |||
| KEb | |||
| KEb | |||
|- | |- | ||
| 8 | | 8 | ||
| 133. | | 133.3 | ||
| | | 13/12, 14/13, 27/25 | ||
| v~2 | | ^^m2, v~2 | ||
| downmid 2nd | | dupminor 2nd, downmid 2nd | ||
| ^^Eb | | ^^Eb | ||
| Om2 | |||
| on minor 2nd | |||
| OEb | |||
| SEb | |||
|- | |- | ||
| 9 | | 9 | ||
| 150. | | 150.0 | ||
| 12/11 | | 12/11 | ||
| ~2 | | ~2 | ||
| mid 2nd | | mid 2nd | ||
| v<sup>3</sup>E | | v<sup>3</sup>E | ||
| N2 | |||
| neutral 2nd | |||
| UEb/uE | |||
| UEb/uE | |||
|- | |- | ||
| 10 | | 10 | ||
| 166. | | 166.7 | ||
| 11/10 | | 11/10 | ||
| ^~2 | | ^~2, vvM2 | ||
| upmid 2nd | | upmid 2nd, dudmajor 2nd | ||
| vvE | | vvE | ||
| oM2 | |||
| off major 2nd | |||
| oE | |||
| sE | |||
|- | |- | ||
| 11 | | 11 | ||
| 183. | | 183.3 | ||
| 10/9 | | 10/9 | ||
| vM2 | | vM2 | ||
| downmajor 2nd | | downmajor 2nd | ||
| vE | | vE | ||
| kM2 | |||
| classic/comma-narrow major 2nd | |||
| kE | |||
| kE | |||
|- | |- | ||
| 12 | | 12 | ||
| 200. | | 200.0 | ||
| 9/8 | | 9/8 | ||
| M2 | | M2 | ||
| major 2nd | | major 2nd | ||
| E | |||
| M2 | |||
| major 2nd | |||
| E | |||
| E | | E | ||
|- | |- | ||
| 13 | | 13 | ||
| 216. | | 216.7 | ||
| 25/22 | | 17/15, 25/22 | ||
| ^M2 | | ^M2 | ||
| upmajor 2nd | | upmajor 2nd | ||
| ^E | | ^E | ||
| LM2 | |||
| large major 2nd | |||
| LE | |||
| KE | |||
|- | |- | ||
| 14 | | 14 | ||
| 233. | | 233.3 | ||
| 8/7 | | 8/7 | ||
| ^^M2 | | ^^M2 | ||
| dupmajor 2nd | | dupmajor 2nd | ||
| ^^E | | ^^E | ||
| SM2 | |||
| supermajor 2nd | |||
| SE | |||
| SE | |||
|- | |- | ||
| 15 | | 15 | ||
| 250. | | 250.0 | ||
| | | 15/13, 22/19 | ||
| ^<sup>3</sup>M2, <br>v<sup>3</sup>m3 | | ^<sup>3</sup>M2, <br>v<sup>3</sup>m3 | ||
| trupmajor 2nd,<br>trudminor 3rd | | trupmajor 2nd,<br>trudminor 3rd | ||
| ^<sup>3</sup>E, <br>v<sup>3</sup>F | | ^<sup>3</sup>E, <br>v<sup>3</sup>F | ||
| HM2, hm3 | |||
| hypermajor 2nd, hypominor 3rd | |||
| HE, hF | |||
| UE, uF | |||
|- | |- | ||
| 16 | | 16 | ||
| 266. | | 266.7 | ||
| 7/6 | | 7/6 | ||
| vvm3 | | vvm3 | ||
| dudminor 3rd | | dudminor 3rd | ||
| vvF | | vvF | ||
| sm3 | |||
| subminor 3rd | |||
| sF | |||
| sF | |||
|- | |- | ||
| 17 | | 17 | ||
| 283. | | 283.3 | ||
| | | 13/11, 20/17 | ||
| vm3 | | vm3 | ||
| downminor 3rd | | downminor 3rd | ||
| vF | | vF | ||
| lm3 | |||
| little minor 3rd | |||
| lF | |||
| kF | |||
|- | |- | ||
| 18 | | 18 | ||
| 300. | | 300.0 | ||
| 25/21 | | 19/16, 25/21, 32/27 | ||
| m3 | |||
| minor 3rd | |||
| F | |||
| m3 | | m3 | ||
| minor 3rd | | minor 3rd | ||
| F | |||
| F | | F | ||
|- | |- | ||
| 19 | | 19 | ||
| 316. | | 316.7 | ||
| 6/5 | | 6/5 | ||
| ^m3 | | ^m3 | ||
| upminor 3rd | | upminor 3rd | ||
| ^F | | ^F | ||
| Km3 | |||
| classic minor 3rd | |||
| KF | |||
| KF | |||
|- | |- | ||
| 20 | | 20 | ||
| 333. | | 333.3 | ||
| 40/33 | | 17/14, 39/32, 40/33 | ||
| v~3 | | ^^m3, v~3 | ||
| downmid 3rd | | dupminor 3rd, downmid 3rd | ||
| ^^F | | ^^F | ||
| Om3 | |||
| on minor third | |||
| OF | |||
| SF | |||
|- | |- | ||
| 21 | | 21 | ||
| 350. | | 350.0 | ||
| 11/9 | | 11/9, 27/22 | ||
| ~3 | | ~3 | ||
| mid 3rd | | mid 3rd | ||
| ^<sup>3</sup>F | | ^<sup>3</sup>F | ||
| N3 | |||
| neutral 3rd | |||
| UF/uF# | |||
| UF/uF# | |||
|- | |- | ||
| 22 | | 22 | ||
| 366. | | 366.7 | ||
| | | 16/13, 21/17, 26/21 | ||
| ^~3 | | ^~3, vvM3 | ||
| upmid 3rd | | upmid 3rd, dudmajor 3rd | ||
| vvF# | | vvF# | ||
| oM3 | |||
| off major 3rd | |||
| oF# | |||
| sF# | |||
|- | |- | ||
| 23 | | 23 | ||
| 383. | | 383.3 | ||
| 5/4 | | 5/4 | ||
| vM3 | | vM3 | ||
| downmajor 3rd | | downmajor 3rd | ||
| vF# | | vF# | ||
| kM3 | |||
| classic major 3rd | |||
| kF# | |||
| kF# | |||
|- | |- | ||
| 24 | | 24 | ||
| 400. | | 400.0 | ||
| | | 24/19 | ||
| M3 | | M3 | ||
| major 3rd | | major 3rd | ||
| F# | |||
| M3 | |||
| major 3rd | |||
| F# | |||
| F# | | F# | ||
|- | |- | ||
| 25 | | 25 | ||
| 416. | | 416.7 | ||
| 14/11 | | 14/11 | ||
| ^M3 | | ^M3 | ||
| upmajor 3rd | | upmajor 3rd | ||
| ^F# | | ^F# | ||
| LM3 | |||
| large major 3rd | |||
| LF# | |||
| KF# | |||
|- | |- | ||
| 26 | | 26 | ||
| 433. | | 433.3 | ||
| 9/7 | | 9/7 | ||
| ^^M3 | | ^^M3 | ||
| dupmajor 3rd | | dupmajor 3rd | ||
| ^^F# | | ^^F# | ||
| SM3 | |||
| supermajor 3rd | |||
| SF# | |||
| SF# | |||
|- | |- | ||
| 27 | | 27 | ||
| 450. | | 450.0 | ||
| | | 13/10, 22/17 | ||
| ^<sup>3</sup>M3, v<sup>3</sup>4 | | ^<sup>3</sup>M3, v<sup>3</sup>4 | ||
| trupmajor 3rd, trud 4th | | trupmajor 3rd, trud 4th | ||
| ^<sup>3</sup>F#, v<sup>3</sup>G | | ^<sup>3</sup>F#, v<sup>3</sup>G | ||
| HM3, h4 | |||
| hypermajor 3rd, hypo 4th | |||
| HF#, hG | |||
| UF#, uG | |||
|- | |- | ||
| 28 | | 28 | ||
| 466. | | 466.7 | ||
| 21/16 | | 17/13, 21/16 | ||
| vv4 | | vv4 | ||
| dud 4th | | dud 4th | ||
| vvG | | vvG | ||
| s4 | |||
| sub 4th | |||
| sG | |||
| sG | |||
|- | |- | ||
| 29 | | 29 | ||
| 483. | | 483.3 | ||
| 33/25 | | 33/25 | ||
| v4 | | v4 | ||
| down 4th | | down 4th | ||
| vG | | vG | ||
| l4 | |||
| little 4th | |||
| lG | |||
| kG | |||
|- | |- | ||
| 30 | | 30 | ||
| 500. | | 500.0 | ||
| 4/3 | | 4/3 | ||
| P4 | | P4 | ||
| perfect 4th | | perfect 4th | ||
| G | |||
| P4 | |||
| perfect 4th | |||
| G | |||
| G | | G | ||
|- | |- | ||
| 31 | | 31 | ||
| 516. | | 516.7 | ||
| 27/20 | | 27/20 | ||
| ^4 | | ^4 | ||
| up 4th | | up 4th | ||
| ^G | | ^G | ||
| K4 | |||
| comma-wide 4th | |||
| KG | |||
| KG | |||
|- | |- | ||
| 32 | | 32 | ||
| 533. | | 533.3 | ||
| 15/11 | | 15/11, 19/14, ''26/19'' | ||
| ^^4, v~4 | | ^^4, v~4 | ||
| dup 4th, downmid 4th | | dup 4th, downmid 4th | ||
| ^^G | | ^^G | ||
| O4 | |||
| on 4th | |||
| OG | |||
| SG | |||
|- | |- | ||
| 33 | | 33 | ||
| 550. | | 550.0 | ||
| 11/8 | | 11/8 | ||
| ~4 | | ~4 | ||
| mid 4th | | mid 4th | ||
| ^<sup>3</sup>G | | ^<sup>3</sup>G | ||
| U4/N4 | |||
| uber 4th / neutral 4th | |||
| UG | |||
| UG | |||
|- | |- | ||
| 34 | | 34 | ||
| 566. | | 566.7 | ||
| 25/18 | | 18/13, 25/18 | ||
| ^~4, vvA4 | | ^~4, vvA4 | ||
| upmid 4th, dudaug 4th | | upmid 4th, dudaug 4th | ||
| vvG# | | vvG# | ||
| kkA4, sd5 | |||
| classic aug 4th, sub dim 5th | |||
| kkG#, sAb | |||
| SG#, (kkG#), sAb | |||
|- | |- | ||
| 35 | | 35 | ||
| 583. | | 583.3 | ||
| 7/5 | | 7/5 | ||
| vA4, vd5 | | vA4, vd5 | ||
| downaug 4th, downdim 5th | | downaug 4th, <br>downdim 5th | ||
| vG#, vAb | | vG#, vAb | ||
| kA4, ld5 | |||
| comma-narrow aug 4th, little dim 5th | |||
| kG#, lAb | |||
| kG#, kAb | |||
|- | |- | ||
| 36 | | 36 | ||
| 600. | | 600.0 | ||
| | | 17/12, 24/17 | ||
| A4, d5 | | A4, d5 | ||
| aug 4th, dim 5th | | aug 4th, dim 5th | ||
| G#, Ab | |||
| A4, d5 | |||
| aug 4th, dim 5th | |||
| G#, Ab | |||
| G#, Ab | | G#, Ab | ||
|- | |- | ||
| 37 | | 37 | ||
| 616. | | 616.7 | ||
| 10/7 | | 10/7 | ||
| ^A4, ^d5 | | ^A4, ^d5 | ||
| upaug 4th, updim 5th | | upaug 4th, updim 5th | ||
| ^G#, ^Ab | | ^G#, ^Ab | ||
| LA4, Kd5 | |||
| large aug 4th, comma-wide dim 5th | |||
| LG#, KAb | |||
| KG#, KAb | |||
|- | |- | ||
| 38 | | 38 | ||
| 633. | | 633.3 | ||
| 36/25 | | 13/9, 36/25 | ||
| v~5, ^^d5 | | v~5, ^^d5 | ||
| downmid 5th, dupdim 5th | | downmid 5th, <br>dupdim 5th | ||
| ^^Ab | | ^^Ab | ||
| SA4, KKd5 | |||
| super aug 4th, classic dim 5th | |||
| SG#, KKAb | |||
| SG#, SAb, (KKAb) | |||
|- | |- | ||
| 39 | | 39 | ||
| 650. | | 650.0 | ||
| 16/11 | | 16/11 | ||
| ~5 | | ~5 | ||
| mid 5th | | mid 5th | ||
| v<sup>3</sup>A | | v<sup>3</sup>A | ||
| u5/N5 | |||
| unter 5th / neutral 5th | |||
| uA | |||
| uA | |||
|- | |- | ||
| 40 | | 40 | ||
| 666. | | 666.7 | ||
| 22/15 | | ''19/13'', 22/15, 28/19 | ||
| vv5, ^~5 | | vv5, ^~5 | ||
| dud 5th, upmid 5th | | dud 5th, upmid 5th | ||
| vvA | | vvA | ||
| o5 | |||
| off 5th | |||
| oA | |||
| sA | |||
|- | |- | ||
| 41 | | 41 | ||
| 683. | | 683.3 | ||
| 40/27 | | 40/27 | ||
| v5 | | v5 | ||
| down 5th | | down 5th | ||
| vA | | vA | ||
| k5 | |||
| comma-narrow 5th | |||
| kA | |||
| kA | |||
|- | |- | ||
| 42 | | 42 | ||
| 700. | | 700.0 | ||
| 3/2 | | 3/2 | ||
| P5 | | P5 | ||
| perfect 5th | | perfect 5th | ||
| A | |||
| P5 | |||
| perfect 5th | |||
| A | |||
| A | | A | ||
|- | |- | ||
| 43 | | 43 | ||
| 716. | | 716.7 | ||
| 50/33 | | 50/33 | ||
| ^5 | | ^5 | ||
| up 5th | | up 5th | ||
| ^A | | ^A | ||
| L5 | |||
| large fifth | |||
| LA | |||
| KA | |||
|- | |- | ||
| 44 | | 44 | ||
| 733. | | 733.3 | ||
| 32/21 | | 26/17, 32/21 | ||
| ^^5 | | ^^5 | ||
| dup 5th | | dup 5th | ||
| ^^A | | ^^A | ||
| S5 | |||
| super fifth | |||
| SA | |||
| SA | |||
|- | |- | ||
| 45 | | 45 | ||
| 750. | | 750.0 | ||
| | | 17/11, 20/13 | ||
| ^<sup>3</sup>5, v<sup>3</sup>m6 | | ^<sup>3</sup>5, v<sup>3</sup>m6 | ||
| trup 5th, trudminor 6th | | trup 5th, trudminor 6th | ||
| ^<sup>3</sup>A, v<sup>3</sup>Bb | | ^<sup>3</sup>A, v<sup>3</sup>Bb | ||
| H5, hm6 | |||
| hyper fifth, hypominor 6th | |||
| HA, hBb | |||
| UA, uBb | |||
|- | |- | ||
| 46 | | 46 | ||
| 766. | | 766.7 | ||
| 14/9 | | 14/9 | ||
| vvm6 | | vvm6 | ||
| dudminor 6th | | dudminor 6th | ||
| vvBb | | vvBb | ||
| sm6 | |||
| superminor 6th | |||
| sBb | |||
| sBb | |||
|- | |- | ||
| 47 | | 47 | ||
| 783. | | 783.3 | ||
| 11/7 | | 11/7 | ||
| vm6 | | vm6 | ||
| downminor 6th | | downminor 6th | ||
| vBb | | vBb | ||
| lm6 | |||
| little minor 6th | |||
| lBb | |||
| kBb | |||
|- | |- | ||
| 48 | | 48 | ||
| 800. | | 800.0 | ||
| | | 19/12 | ||
| m6 | | m6 | ||
| minor 6th | | minor 6th | ||
| Bb | |||
| m6 | |||
| minor 6th | |||
| Bb | |||
| Bb | | Bb | ||
|- | |- | ||
| 49 | | 49 | ||
| 816. | | 816.7 | ||
| 8/5 | | 8/5 | ||
| ^m6 | | ^m6 | ||
| upminor 6th | | upminor 6th | ||
| ^Bb | | ^Bb | ||
| Km6 | |||
| classic minor 6th | |||
| kBb | |||
| kBb | |||
|- | |- | ||
| 50 | | 50 | ||
| 833. | | 833.3 | ||
| | | 13/8, 21/13, 34/21 | ||
| v~6 | | ^^m6, v~6 | ||
| downmid 6th | | dupminor 6th, downmid 6th | ||
| ^^Bb | | ^^Bb | ||
| Om6 | |||
| on minor 6th | |||
| oBb | |||
| sBb | |||
|- | |- | ||
| 51 | | 51 | ||
| 850. | | 850.0 | ||
| 18/11 | | 18/11, 44/27 | ||
| ~6 | | ~6 | ||
| mid 6th | | mid 6th | ||
| v<sup>3</sup>B | | v<sup>3</sup>B | ||
| N6 | |||
| neutral 6th | |||
| UBb, uB | |||
| UBb, uB | |||
|- | |- | ||
| 52 | | 52 | ||
| 866. | | 866.7 | ||
| 33/20, | | 28/17, 33/20, 64/39 | ||
| ^~6 | | ^~6, vvM6 | ||
| upmid 6th | | upmid 6th, dudmajor 6th | ||
| vvB | | vvB | ||
| oM6 | |||
| off major 6th | |||
| oB | |||
| sB | |||
|- | |- | ||
| 53 | | 53 | ||
| 883. | | 883.3 | ||
| 5/3 | | 5/3 | ||
| vM6 | | vM6 | ||
| downmajor 6th | | downmajor 6th | ||
| vB | | vB | ||
| kM6 | |||
| classic major 6th | |||
| kB | |||
| kB | |||
|- | |- | ||
| 54 | | 54 | ||
| 900. | | 900.0 | ||
| 27/16 | | 27/16, 32/19, 42/25 | ||
| M6 | |||
| major 6th | |||
| B | |||
| M6 | | M6 | ||
| major 6th | | major 6th | ||
| B | |||
| B | | B | ||
|- | |- | ||
| 55 | | 55 | ||
| 916. | | 916.7 | ||
| | | 17/10, 22/13 | ||
| ^M6 | | ^M6 | ||
| upmajor 6th | | upmajor 6th | ||
| ^B | | ^B | ||
| LM6 | |||
| large major 6th | |||
| LB | |||
| KB | |||
|- | |- | ||
| 56 | | 56 | ||
| 933. | | 933.3 | ||
| 12/7 | | 12/7 | ||
| ^^M6 | | ^^M6 | ||
| dupmajor 6th | | dupmajor 6th | ||
| ^^B | | ^^B | ||
| SM6 | |||
| supermajor 6th | |||
| SB | |||
| SB | |||
|- | |- | ||
| 57 | | 57 | ||
| 950. | | 950.0 | ||
| | | 19/11, 26/15 | ||
| ^<sup>3</sup>M6, <br>v<sup>3</sup>m7 | | ^<sup>3</sup>M6, <br>v<sup>3</sup>m7 | ||
| trupmajor 6th,<br>trudminor 7th | | trupmajor 6th,<br>trudminor 7th | ||
| ^<sup>3</sup>B, <br>v<sup>3</sup>C | | ^<sup>3</sup>B, <br>v<sup>3</sup>C | ||
| HM6, hm7 | |||
| hypermajor 6th, hypominor 7th | |||
| HB, hC | |||
| UB, uC | |||
|- | |- | ||
| 58 | | 58 | ||
| 966. | | 966.7 | ||
| 7/4 | | 7/4 | ||
| vvm7 | | vvm7 | ||
| dudminor 7th | | dudminor 7th | ||
| vvC | | vvC | ||
| sm7 | |||
| subminor 7th | |||
| sC | |||
| sC | |||
|- | |- | ||
| 59 | | 59 | ||
| 983. | | 983.3 | ||
| 44/25 | | 30/17, 44/25 | ||
| vm7 | | vm7 | ||
| downminor 7th | | downminor 7th | ||
| vC | | vC | ||
| lm7 | |||
| little minor 7th | |||
| lC | |||
| kC | |||
|- | |- | ||
| 60 | | 60 | ||
| 1000. | | 1000.0 | ||
| 16/9 | | 16/9 | ||
| m7 | | m7 | ||
| minor 7th | | minor 7th | ||
| C | |||
| m7 | |||
| minor 7th | |||
| C | |||
| C | | C | ||
|- | |- | ||
| 61 | | 61 | ||
| 1016. | | 1016.7 | ||
| 9/5 | | 9/5 | ||
| ^m7 | | ^m7 | ||
| upminor 7th | | upminor 7th | ||
| ^C | | ^C | ||
| Km7 | |||
| classic/comma-wide minor 7th | |||
| KC | |||
| KC | |||
|- | |- | ||
| 62 | | 62 | ||
| 1033. | | 1033.3 | ||
| 20/11 | | 20/11 | ||
| v~7 | | ^^m7, v~7 | ||
| downmid 7th | | dupminor 7th, downmid 7th | ||
| ^^C | | ^^C | ||
| Om7 | |||
| on minor 7th | |||
| OC | |||
| SC | |||
|- | |- | ||
| 63 | | 63 | ||
| 1050. | | 1050.0 | ||
| 11/6 | | 11/6 | ||
| ~7 | | ~7 | ||
| mid 7th | | mid 7th | ||
| ^<sup>3</sup>C | | ^<sup>3</sup>C | ||
| N7, hd8 | |||
| neutral 7th, hypo dim 8ve | |||
| UC/uC#, hDb | |||
| UC/uC#, uDb | |||
|- | |- | ||
| 64 | | 64 | ||
| 1066. | | 1066.7 | ||
| 50/27 | | 13/7, 24/13, 50/27 | ||
| ^~7 | | ^~7, vvM7 | ||
| upmid 7th | | upmid 7th, dudmajor 7th | ||
| vvC# | | vvC# | ||
| oM7, sd8 | |||
| off major 7th, sub dim 8ve | |||
| oC#, sDb | |||
| sC#, sDb | |||
|- | |- | ||
| 65 | | 65 | ||
| 1083. | | 1083.3 | ||
| 15/8 | | 15/8, 28/15 | ||
| vM7 | | vM7 | ||
| downmajor 7th | | downmajor 7th | ||
| vC# | | vC# | ||
| kM7, ld8 | |||
| classic major 7th, little dim 8ve | |||
| kC#, lDb | |||
| kC#, kDb | |||
|- | |- | ||
| 66 | | 66 | ||
| 1100. | | 1100.0 | ||
| | | 17/9, 32/17, 36/19 | ||
| M7 | | M7 | ||
| major 7th | | major 7th | ||
| C# | | C# | ||
| M7, d8 | |||
| major 7th, dim 8ve | |||
| C#, Db | |||
| C#, Db | |||
|- | |- | ||
| 67 | | 67 | ||
| 1116. | | 1116.7 | ||
| 21/11 | | 19/10, 21/11, 40/21 | ||
| ^M7 | | ^M7 | ||
| upmajor 7th | | upmajor 7th | ||
| ^C# | | ^C# | ||
| LM7, Kd8 | |||
| large major 7th, comma-wide dim 8ve | |||
| LC#, KDb | |||
| KC#, KDb | |||
|- | |- | ||
| 68 | | 68 | ||
| 1133. | | 1133.3 | ||
| 27/14 | | 25/13, 27/14, 48/25, 52/27 | ||
| ^^M7 | | ^^M7 | ||
| dupmajor 7th | | dupmajor 7th | ||
| ^^C# | | ^^C# | ||
| SM7, KKd8 | |||
| supermajor 7th, classic dim 8ve | |||
| SC#, KKDb | |||
| SC#, SDb, (KKDb) | |||
|- | |- | ||
| 69 | | 69 | ||
| 1150. | | 1150.0 | ||
| 35/18 | | 35/18, 39/20, 64/33 | ||
| ^<sup>3</sup>M7, v<sup>3</sup>8 | | ^<sup>3</sup>M7, v<sup>3</sup>8 | ||
| trupmajor 7th, trud octave | | trupmajor 7th, trud octave | ||
| ^<sup>3</sup>C#, v<sup>3</sup>D | | ^<sup>3</sup>C#, v<sup>3</sup>D | ||
| HM7, u8, h8 | |||
| hypermajor 7th, unter 8ve, hypo 8ve | |||
| HC#, uD, hD | |||
| UC#, uDb, uD | |||
|- | |- | ||
| 70 | | 70 | ||
| 1166. | | 1166.7 | ||
| 49/25 | | 49/25, 55/28, 63/32, 88/45, 96/49 | ||
| vv8 | | vv8 | ||
| dud octave | | dud octave | ||
| vvD | | vvD | ||
| s8, o8 | |||
| sub 8ve, off 8ve | |||
| sD, oD | |||
| sD | |||
|- | |- | ||
| 71 | | 71 | ||
| 1183. | | 1183.3 | ||
| 99/50 | | 99/50, 160/81, 180/91, 196/99, 208/105 | ||
| v8 | | v8 | ||
| down octave | | down octave | ||
| vD | | vD | ||
| k8, l8 | |||
| comma-narrow 8ve, little 8ve | |||
| kD, lD | |||
| kD | |||
|- | |- | ||
| 72 | | 72 | ||
| 1200. | | 1200.0 | ||
| 2/1 | | 2/1 | ||
| P8 | | P8 | ||
| perfect octave | | perfect octave | ||
| D | |||
| P8 | |||
| perfect octave | |||
| D | |||
| D | | D | ||
|} | |} | ||
<references group="note" /> | |||
=== Interval quality and chord names in color notation === | |||
Combining ups and downs notation with [[color notation]], qualities can be loosely associated with colors: | |||
Combining ups and downs notation with [[ | |||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|- | |- | ||
! | ! Quality | ||
! [[ | ! [[Color notation|Color]] | ||
! | ! Monzo format | ||
! | ! Examples | ||
|- | |- | ||
| dudminor | | dudminor | ||
| zo | | zo | ||
| (a b 0 1) | | (a b 0 1) | ||
| 7/6, 7/ | | 7/6, 7/4 | ||
|- | |- | ||
| minor | | minor | ||
| fourthward wa | | fourthward wa | ||
| (a b), b | | (a b), b < -1 | ||
| 32/27, 16/9 | | 32/27, 16/9 | ||
|- | |- | ||
Line 567: | Line 874: | ||
| 6/5, 9/5 | | 6/5, 9/5 | ||
|- | |- | ||
| rowspan="2" |downmid | | rowspan="2" | dupminor, <br>downmid | ||
|luyo | | luyo | ||
|(a b 1 0 -1) | | (a b 1 0 -1) | ||
|15/11 | | 15/11 | ||
|- | |- | ||
|tho | | tho | ||
|(a b 0 0 0 1) | | (a b 0 0 0 1) | ||
|13/8, 13/9 | | 13/8, 13/9 | ||
|- | |- | ||
| rowspan="2" | mid | | rowspan="2" | mid | ||
| ilo | | ilo | ||
| (a | | (a b 0 0 1) | ||
| 11/9, 11/6 | | 11/9, 11/6 | ||
|- | |- | ||
| lu | | lu | ||
| (a | | (a b 0 0 -1) | ||
| 12/11, 18/11 | | 12/11, 18/11 | ||
|- | |- | ||
| rowspan="2" |upmid | | rowspan="2" | upmid, <br>dudmajor | ||
|logu | | logu | ||
|(a b -1 0 1) | | (a b -1 0 1) | ||
|11/10 | | 11/10 | ||
|- | |- | ||
|thu | | thu | ||
|(a b 0 0 0 -1) | | (a b 0 0 0 -1) | ||
|16/13, 18/13 | | 16/13, 18/13 | ||
|- | |- | ||
| downmajor | | downmajor | ||
Line 601: | Line 908: | ||
| major | | major | ||
| fifthward wa | | fifthward wa | ||
| (a b), b | | (a b), b > 1 | ||
| 9/8, 27/16 | | 9/8, 27/16 | ||
|- | |- | ||
| dupmajor | | dupmajor | ||
| ru | | ru | ||
| (a | | (a b 0 -1) | ||
| 9/7, 12/7 | | 9/7, 12/7 | ||
|- | |||
| rowspan="2" | trupmajor, <br>trudminor | |||
| thogu | |||
| (a b -1 0 0 1) | |||
| 13/10 | |||
|- | |||
| thuyo | |||
| (a b 1 0 0 -1) | |||
| 15/13 | |||
|} | |} | ||
All | All 72edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|- | |- | ||
! [[ | ! [[Color notation|Color of the 3rd]] | ||
! JI chord | ! JI chord | ||
! | ! Notes as edosteps | ||
! | ! Notes of C chord | ||
! | ! Written name | ||
! | ! Spoken name | ||
|- | |- | ||
| zo | | zo | ||
Line 655: | Line 971: | ||
| C dupmajor or C dup | | C dupmajor or C dup | ||
|} | |} | ||
For a more complete list, see [[Ups and | For a more complete list, see [[Ups and downs notation #Chord names in other EDOs]]. | ||
=== Relationship between primes and rings === | |||
In 72tet, there are 6 [[ring number|rings]]. 12edo is the plain ring; thus every 6 degrees is the 3-limit. | |||
Then, after each subsequent degree in reverse, a new prime limit is unveiled from it: | |||
* −1 degree (the down ring) corrects 81/64 to 5/4 via 80/81 | |||
* −2 degrees (the dud ring) corrects 16/9 to 7/4 via 63/64 | |||
* +3 degrees (the trup ring) corrects 4/3 to 11/8 via 33/32 | |||
* +2 degrees (the dup ring) corrects 128/81 to 13/8 via 1053/1024 | |||
* 0 degrees (the plain ring) corrects 256/243 to 17/16 via 4131/4096 | |||
* 0 degrees (the plain ring) corrects 32/27 to 19/16 via 513/512 | |||
Thus the product of a ratio's monzo with {{map| 0 0 -1 -2 3 2 0 0 }}, modulo 6, specifies which ring the ratio lies on. | |||
== Notations == | == Notations == | ||
=== Sagittal === | === Ups and downs notation === | ||
72edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | |||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp6}} | |||
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals: | |||
{{Sharpness-sharp6-qt}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[65edo#Sagittal notation|65-EDO]] and [[79edo#Sagittal notation|79]], and is a superset of the notations for EDOs [[36edo#Sagittal notation|36]], [[24edo#Sagittal notation|24]], [[18edo#Sagittal notation|18]], [[12edo#Sagittal notation|12]], [[8edo#Sagittal notation|8]], and [[6edo#Sagittal notation|6]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:72-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 719 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:72-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 695 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:72-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 711 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
From the appendix to [[The Sagittal Songbook]] by [[Jacob Barton|Jacob A. Barton]], a diagram of how to notate 72edo in the Revo flavor of Sagittal: | From the appendix to [[The Sagittal Songbook]] by [[Jacob Barton|Jacob A. Barton]], a diagram of how to notate 72edo in the Revo flavor of Sagittal: | ||
[[File:72edo Sagittal.png|800px]] | [[File:72edo Sagittal.png|800px]] | ||
== | === Ivan Wyschnegradsky's notation === | ||
= | {{Sharpness-sharp6-iw|72}} | ||
[[File: | == Approximation to JI == | ||
[[File:72ed2.svg|250px|thumb|right|none|alt=alt : Your browser has no SVG support.|Selected intervals approximated in 72edo]] | |||
=== | === Interval mappings === | ||
{{Q-odd-limit intervals|72}} | |||
=== Zeta properties === | |||
72edo is the ninth [[zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[the Riemann zeta function and tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. | |||
[[File:plot72.png|alt=plot72.png|plot72.png]] | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 687: | Line 1,070: | ||
| 2.3.5 | | 2.3.5 | ||
| 15625/15552, 531441/524288 | | 15625/15552, 531441/524288 | ||
| | | {{Mapping| 72 114 167 }} | ||
| +0.839 | | +0.839 | ||
| 0.594 | | 0.594 | ||
Line 694: | Line 1,077: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 225/224, 1029/1024, 4375/4374 | | 225/224, 1029/1024, 4375/4374 | ||
| | | {{Mapping| 72 114 167 202 }} | ||
| +0.822 | | +0.822 | ||
| 0.515 | | 0.515 | ||
Line 701: | Line 1,084: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 225/224, 243/242, 385/384, 4000/3993 | | 225/224, 243/242, 385/384, 4000/3993 | ||
| | | {{Mapping| 72 114 167 202 249 }} | ||
| +0.734 | | +0.734 | ||
| 0.493 | | 0.493 | ||
Line 708: | Line 1,091: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 169/168, 225/224, 243/242, 325/324, 385/384 | | 169/168, 225/224, 243/242, 325/324, 385/384 | ||
| | | {{Mapping| 72 114 167 202 249 266 }} | ||
| +0.936 | | +0.936 | ||
| 0.638 | | 0.638 | ||
Line 715: | Line 1,098: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 169/168, 221/220, 225/224, 243/242, 273/272, 325/324 | | 169/168, 221/220, 225/224, 243/242, 273/272, 325/324 | ||
| | | {{Mapping| 72 114 167 202 249 266 294 }} | ||
| +0.975 | | +0.975 | ||
| 0.599 | | 0.599 | ||
| 3.59 | | 3.59 | ||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 153/152, 169/168, 210/209, 221/220, 225/224, 243/242, 273/272 | |||
| {{Mapping| 72 114 167 202 249 266 294 306 }} | |||
| +0.780 | |||
| 0.762 | |||
| 4.57 | |||
|} | |} | ||
* 72et has lower relative errors than any previous equal temperaments in the 7-, 11-, 13-, 17-, and 19-limit. The next equal temperaments doing better in these subgroups are [[99edo|99]], [[270edo|270]], [[224edo|224]], [[494edo|494]], and [[217edo|217]], respectively. | |||
72et | |||
=== Commas === | === Commas === | ||
Line 727: | Line 1,116: | ||
{| class="commatable wikitable center-1 center-2 right-4" | {| class="commatable wikitable center-1 center-2 right-4" | ||
! [[Harmonic limit|Prime<br> | |- | ||
! [[Ratio]]<ref> | ! [[Harmonic limit|Prime<br>limit]] | ||
! [[Ratio]]<ref group="note">{{rd}}</ref> | |||
! [[Monzo]] | ! [[Monzo]] | ||
! [[Cents]] | ! [[Cents]] | ||
Line 735: | Line 1,125: | ||
| 3 | | 3 | ||
| [[531441/524288|(12 digits)]] | | [[531441/524288|(12 digits)]] | ||
| {{Monzo|-19 12 }} | | {{Monzo| -19 12 }} | ||
| 23.46 | | 23.46 | ||
| Pythagorean comma | | Pythagorean comma | ||
Line 749: | Line 1,139: | ||
| {{Monzo| -25 7 6 }} | | {{Monzo| -25 7 6 }} | ||
| 31.57 | | 31.57 | ||
| [[Ampersand]] | | [[Ampersand comma]] | ||
|- | |- | ||
| 5 | | 5 | ||
Line 767: | Line 1,157: | ||
| {{Monzo| -5 2 2 -1 }} | | {{Monzo| -5 2 2 -1 }} | ||
| 7.71 | | 7.71 | ||
| | | Marvel comma | ||
|- | |- | ||
| 7 | | 7 | ||
Line 791: | Line 1,181: | ||
| {{Monzo| 0 3 4 -5 }} | | {{Monzo| 0 3 4 -5 }} | ||
| 6.99 | | 6.99 | ||
| Mirkwai | | Mirkwai comma | ||
|- | |- | ||
| 7 | | 7 | ||
Line 797: | Line 1,187: | ||
| {{Monzo| -4 9 -2 -2 }} | | {{Monzo| -4 9 -2 -2 }} | ||
| 7.32 | | 7.32 | ||
| Cataharry | | Cataharry comma | ||
|- | |- | ||
| 7 | | 7 | ||
Line 839: | Line 1,229: | ||
| {{Monzo| -2 0 3 -3 1 }} | | {{Monzo| -2 0 3 -3 1 }} | ||
| 3.78 | | 3.78 | ||
| Moctdel | | Moctdel comma | ||
|- | |- | ||
| 11 | | 11 | ||
Line 851: | Line 1,241: | ||
| {{Monzo| 5 -1 3 0 -3 }} | | {{Monzo| 5 -1 3 0 -3 }} | ||
| 3.03 | | 3.03 | ||
| Wizardharry | | Wizardharry comma | ||
|- | |- | ||
| 11 | | 11 | ||
Line 863: | Line 1,253: | ||
| {{Monzo| -3 4 -2 -2 2 }} | | {{Monzo| -3 4 -2 -2 2 }} | ||
| 0.18 | | 0.18 | ||
| Kalisma | | Kalisma | ||
|- | |- | ||
| 11 | | 11 | ||
Line 875: | Line 1,265: | ||
| {{Monzo| -3 -1 0 -1 0 2 }} | | {{Monzo| -3 -1 0 -1 0 2 }} | ||
| 10.27 | | 10.27 | ||
| Buzurgisma | | Buzurgisma | ||
|- | |- | ||
| 13 | | 13 | ||
Line 893: | Line 1,283: | ||
| {{Monzo| 2 -1 0 1 -2 1 }} | | {{Monzo| 2 -1 0 1 -2 1 }} | ||
| 4.76 | | 4.76 | ||
| | | Minor minthma | ||
|- | |- | ||
| 13 | | 13 | ||
Line 905: | Line 1,295: | ||
| {{Monzo| 2 -3 -2 0 0 2 }} | | {{Monzo| 2 -3 -2 0 0 2 }} | ||
| 2.56 | | 2.56 | ||
| Island comma | | Island comma | ||
|- | |- | ||
| 13 | | 13 | ||
Line 943: | Line 1,333: | ||
| Jacobin comma | | Jacobin comma | ||
|} | |} | ||
<references/> | <references group="note" /> | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
Line 950: | Line 1,340: | ||
72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit. | 72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit. | ||
{| class="wikitable center- | {| class="wikitable center-all left-5" | ||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |- | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! | ! Cents* | ||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |- | ||
| 1 | | 1 | ||
| 1\72 | | 1\72 | ||
| 16.7 | |||
| 105/104 | |||
| [[Quincy]] | | [[Quincy]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 5\72 | | 5\72 | ||
| 83.3 | |||
| 21/20 | |||
| [[Marvolo]] | | [[Marvolo]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 7\72 | | 7\72 | ||
| 116.7 | |||
| 15/14 | |||
| [[Miracle]] / benediction / manna | | [[Miracle]] / benediction / manna | ||
|- | |- | ||
| 1 | | 1 | ||
| 17\72 | | 17\72 | ||
| 283.3 | |||
| 13/11 | |||
| [[Neominor]] | | [[Neominor]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 19\72 | | 19\72 | ||
| 316.7 | |||
| 6/5 | |||
| [[Catakleismic]] | | [[Catakleismic]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 25\72 | | 25\72 | ||
| 416.7 | |||
| 14/11 | |||
| [[Sqrtphi]] | | [[Sqrtphi]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 29\72 | | 29\72 | ||
| | | 483.3 | ||
| 45/34 | |||
| [[Hemiseven]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 31\72 | | 31\72 | ||
| [[Marvo]] / zarvo | | 516.7 | ||
| 27/20 | |||
| [[Marvo]] / [[zarvo]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 35\72 | | 35\72 | ||
| 583.3 | |||
| 7/5 | |||
| [[Cotritone]] | | [[Cotritone]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 5\72 | | 5\72 | ||
| 83.3 | |||
| 21/20 | |||
| [[Harry]] | | [[Harry]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 7\72 | | 7\72 | ||
| 116.7 | |||
| 15/14 | |||
| [[Semimiracle]] | | [[Semimiracle]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 11\72 | | 11\72 | ||
| [[Unidec]]/hendec | | 183.3 | ||
| 10/9 | |||
| [[Unidec]] / hendec | |||
|- | |- | ||
| 2 | | 2 | ||
| | | 21\72<br>(19\72) | ||
| [[ | | 316.7<br>(283.3) | ||
| 6/5<br>(13/11) | |||
| [[Bikleismic]] | |||
|- | |- | ||
| 2 | | 2 | ||
| | | 23\72<br>(13\72) | ||
| [[ | | 383.3<br>(216.7) | ||
| 5/4<br>(17/15) | |||
| [[Wizard]] / lizard / gizzard | |||
|- | |- | ||
| 3 | | 3 | ||
| | | 11\72 | ||
| | | 183.3 | ||
| 10/9 | |||
| [[Mirkat]] | |||
|- | |- | ||
| 3 | | 3 | ||
| 5\72 | | 19\72<br>(5\72) | ||
| 316.7<br>(83.3) | |||
| 6/5<br>(21/20) | |||
| [[Tritikleismic]] | | [[Tritikleismic]] | ||
|- | |- | ||
| 4 | | 4 | ||
| 1\72 | | 19\72<br>(1\72) | ||
| 316.7<br>(16.7) | |||
| 6/5<br>(105/104) | |||
| [[Quadritikleismic]] | | [[Quadritikleismic]] | ||
|- | |- | ||
| 8 | | 8 | ||
| 2\72 | | 34\72<br>(2\72) | ||
| [[Octowerck]] | | 566.7<br>(33.3) | ||
| 168/121<br>(55/54) | |||
| [[Octowerck]] / octowerckis | |||
|- | |- | ||
| 8 | | 8 | ||
| | | 35\72<br>(1\72) | ||
| | | 583.3<br>(16.7) | ||
| 7/5<br>(100/99) | |||
| [[Octoid]] / octopus | |||
|- | |- | ||
| 9 | | 9 | ||
| | | 19\72<br>(3\72) | ||
| | | 316.7<br>(50.0) | ||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] / ennealimnic | |||
|- | |- | ||
| 9 | | 9 | ||
| | | 23\72<br>(1\72) | ||
| [[ | | 383.3<br>(16.7) | ||
| 5/4<br>(105/104) | |||
| [[Enneaportent]] | |||
|- | |- | ||
| 12 | | 12 | ||
| 1\72 | | 23\72<br>(1\72) | ||
| [[Compton]] | | 383.3<br>(16.7) | ||
| 5/4<br>(100/99) | |||
| [[Compton]] / comptone | |||
|- | |- | ||
| 18 | | 18 | ||
| 1\72 | | 19\72<br>(1\72) | ||
| 316.7<br>(16.7) | |||
| 6/5<br>(105/104) | |||
| [[Hemiennealimmal]] | | [[Hemiennealimmal]] | ||
|- | |- | ||
| 24 | | 24 | ||
| 1\72 | | 23\72<br>(1\72) | ||
| 383.3<br>(16.7) | |||
| 5/4<br>(105/104) | |||
| [[Hours]] | | [[Hours]] | ||
|- | |- | ||
| 36 | | 36 | ||
| 1\72 | | 23\72<br>(1\72) | ||
| | | 383.3<br>(16.7) | ||
| 5/4<br>(81/80) | |||
| [[Gamelstearn]] | |||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | == Scales == | ||
* [[ | * [[Smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]] | ||
* [[ | * [[Blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]] | ||
* [[ | * [[Keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]] | ||
* [[ | * [[Genus24255et72|Euler(24255) genus in 72 equal]] | ||
* [[JuneGloom]] | * [[JuneGloom]] | ||
* [[Harry Partch's 43-tone scale]]: 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 | * [[Harry Partch's 43-tone scale]]: 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 | ||
* [[Magnetosphere scale|Magnetosphere]], [[Blackened skies]], [[Lost spirit]] | |||
* [[5- to 10-tone scales in 72edo]] | |||
=== Harmonic scale === | === Harmonic scale === | ||
Mode 8 of the harmonic series | Mode 8 of the harmonic series—[[overtone scale|harmonics 8 through 16]], octave repeating—is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! Harmonics in "Mode 8": | |||
| 8 | | 8 | ||
| | | | ||
Line 1,135: | Line 1,535: | ||
| 16 | | 16 | ||
|- | |- | ||
! …as JI Ratio from 1/1: | |||
| 1/1 | | 1/1 | ||
| | | | ||
Line 1,154: | Line 1,554: | ||
| 2/1 | | 2/1 | ||
|- | |- | ||
! …in cents: | |||
| 0 | | 0 | ||
| | | | ||
Line 1,173: | Line 1,573: | ||
| 1200.0 | | 1200.0 | ||
|- | |- | ||
! Nearest degree of 72edo: | |||
| 0 | | 0 | ||
| | | | ||
Line 1,192: | Line 1,592: | ||
| 72 | | 72 | ||
|- | |- | ||
! …in cents: | |||
| 0 | | 0 | ||
| | | | ||
Line 1,211: | Line 1,611: | ||
| 1200.0 | | 1200.0 | ||
|- | |- | ||
! Steps as Freq. Ratio: | |||
| | | | ||
| 9:8 | | 9:8 | ||
Line 1,230: | Line 1,630: | ||
| | | | ||
|- | |- | ||
! …in cents: | |||
| | | | ||
| 203.9 | | 203.9 | ||
Line 1,249: | Line 1,649: | ||
| | | | ||
|- | |- | ||
! Nearest degree of 72edo: | |||
| | | | ||
| 12 | | 12 | ||
Line 1,268: | Line 1,668: | ||
| | | | ||
|- | |- | ||
! …in cents: | |||
| | | | ||
| 200.0 | | 200.0 | ||
Line 1,288: | Line 1,688: | ||
|} | |} | ||
== | == Instruments == | ||
If one can get six 12edo instruments tuned a twelfth-tone apart, it is possible to use these instruments in combination to play the full gamut of 72edo (see Music). | |||
One can also use a skip fretting system: | |||
* [[Skip fretting system 72 2 27]] | |||
Alternatively, an appropriately mapped keyboard of sufficient size is usable for playing 72edo: | |||
* [[Lumatone mapping for 72edo]] | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/VwVp3RVao_k ''microtonal improvisation in 72edo''] (2025) | |||
; [[Ambient Esoterica]] | |||
* [https://www.youtube.com/watch?v=seWcDAoQjxY ''Goetic Synchronities''] (2023) | |||
* [https://www.youtube.com/watch?v=CrcdM1e2b6Q ''Rainy Day Generative Pillow''] (2024) | |||
; [[Jake Freivald]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3 ''Lazy Sunday'']{{dead link}} in the [[lazysunday]] scale | * [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3 ''Lazy Sunday'']{{dead link}} in the [[lazysunday]] scale | ||
{{Wikipedia|In vain (Haas)}} | |||
; [[Georg Friedrich Haas]] | |||
* [https://www.youtube.com/watch?v=ix4yA-c-Pi8 ''Blumenstück''] (2000) | * [https://www.youtube.com/watch?v=ix4yA-c-Pi8 ''Blumenstück''] (2000) | ||
* [https://youtu.be/cmX-h7_us7A ''in vain''] (2000) ([https://www.universaledition.com/georg-friedrich-haas-278/works/in-vain-7566 score]) | |||
; [[Claudi Meneghin]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3 ''Twinkle canon – 72 edo'']{{dead link}} | * [http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3 ''Twinkle canon – 72 edo'']{{dead link}} | ||
* [https://www.youtube.com/watch?v=zR0NDgh4944 ''The Miracle Canon'', 3-in-1 on a Ground] | |||
* [https://www.youtube.com/watch?v=w6Bckog1eOM ''Sicilienne in Miracle''] | |||
* [https://www.youtube.com/watch?v=QKeZLtFHfNU ''Arietta with 5 Variations'', for Organ] (2024) | |||
; [[Prent Rodgers]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 ''June Gloom #9'']{{dead link}} | * [http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 ''June Gloom #9'']{{dead link}} | ||
; [[Gene Ward Smith]] | |||
* [https://www.archive.org/details/Kotekant ''Kotekant''] [https://www.archive.org/download/Kotekant/kotekant.mp3 play] (2010) | * [https://www.archive.org/details/Kotekant ''Kotekant''] [https://www.archive.org/download/Kotekant/kotekant.mp3 play] (2010) | ||
;[[Ivan Wyschnegradsky]] | |||
* [https://www.youtube.com/watch?v=RCcJHCkYQ6U Arc-en-ciel, for 6 pianos in twelfth tones, Op. 37] (1956) | |||
; [[James Tenney]] | |||
* [https://www.youtube.com/watch?v=jGsxqU1PhZs&list=OLAK5uy_mKyMEMZW7noeLncJnu-JT65go8w7403DA ''Changes for Six Harps''] | * [https://www.youtube.com/watch?v=jGsxqU1PhZs&list=OLAK5uy_mKyMEMZW7noeLncJnu-JT65go8w7403DA ''Changes for Six Harps''] | ||
; [[Xeno Ov Eleas]] | |||
* | * [https://www.youtube.com/watch?v=cx7I0NWem5w ''Χenomorphic Ghost Storm''] (2022) | ||
== External links == | == External links == | ||
Line 1,330: | Line 1,739: | ||
* [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list | * [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list | ||
* [https://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo] | * [https://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo] | ||
* [http://tonalsoft.com/enc/number/72edo.aspx 72-ed2 / 72-edo / 72-ET / 72-tone equal-temperament] on [[Tonalsoft Encyclopedia]] | |||
[[Category:Listen]] | [[Category:Listen]] | ||
[[Category:Compton]] | |||
[[Category:Marvel]] | [[Category:Marvel]] | ||
[[Category:Miracle]] | [[Category:Miracle]] | ||
[[Category:Prodigy]] | [[Category:Prodigy]] | ||
[[Category:Wizard]] | [[Category:Wizard]] |