Kite Guitar explanation for non-microtonalists: Difference between revisions

TallKite (talk | contribs)
Fredg999 (talk | contribs)
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation"
 
(One intermediate revision by one other user not shown)
Line 83: Line 83:
The advantage of guitar-sized EDOs is the simplicity. The "universe" of possible notes is a managable size. Unlike just intonation, melodies don't have small pitch shifts of a comma. Another advantage is the symmetry. Unlike just intonation, every note can be the tonic of any scale. The disadvantage is that the harmonies are no longer perfectly in tune.  
The advantage of guitar-sized EDOs is the simplicity. The "universe" of possible notes is a managable size. Unlike just intonation, melodies don't have small pitch shifts of a comma. Another advantage is the symmetry. Unlike just intonation, every note can be the tonic of any scale. The disadvantage is that the harmonies are no longer perfectly in tune.  


The larger the EDO, the more in tune it is. The smaller the EDO, the more playable it is. 12-EDO is a great compromise. It happens to approximate certain simple ratios very well. For example, by sheer coincidence, the ratio 3/2 is almost exactly seven twelfths of an octave. It's only 2¢ off. Four twelfths of an octave is pretty close to 5/4, but audibly sharp by 14¢. All 5-limit intervals come from combining 3/2 and 5/4 together, so all 5-limit intervals are about 12-16¢ off.  
In general, the larger the EDO, the more in tune it is. The smaller the EDO, the more playable it is. 12-EDO is a great compromise. It happens to approximate certain simple ratios very well. For example, by sheer coincidence, the ratio 3/2 is almost exactly seven twelfths of an octave. It's only 2¢ off. Four twelfths of an octave is pretty close to 5/4, but audibly sharp by 14¢. All 5-limit intervals come from combining 3/2 and 5/4 together, so all 5-limit intervals are about 12-16¢ off.  


We tolerate this slight mistuning in exchange for the convenience of having only 12 notes to deal with. But 12-EDO fails to tune 7-limit JI well. A ratio like 7/6 = 267¢ doesn't really exist in 12-EDO, because the nearest interval is 300¢, which sounds much more like 6/5 (316¢).
We tolerate this slight mistuning in exchange for the convenience of having only 12 notes to deal with. But 12-EDO fails to tune 7-limit JI well. A ratio like 7/6 = 267¢ doesn't really exist in 12-EDO, because the nearest interval is 300¢, which sounds much more like 6/5 (316¢).


To get 5/4 more in tune and keep 3/2 in tune, the EDO has to get larger than 12. EDOs such as 19 and 22 do approximate 3/2 reasonably well, and 5/4 better than 12-EDO. But neither 19-EDO nor 22-EDO tunes 7-limit JI very well. For that, the EDO must get even larger. No EDO tunes primes 3, 5 and 7 well until 31-EDO. And prime 3 is worse in 31-EDO than in 12-EDO. The smallest EDO that improves 3, 5 <u>and</u> 7 over 12-EDO is 41-EDO. 53-EDO and 72-EDO are also famous for being very accurate. But a really big EDO like these paradoxically becomes more like JI. There are lots of notes, and you can get everything really in tune, but the sheer complexity is overwhelming. More about EDOs here: [[EDOs]] and here: [[wikipedia:Equal_temperament|en.wikipedia.org/wiki/Equal_temperament]].  
To get 5/4 more in tune and keep 3/2 in tune, the EDO has to get larger than 12. EDOs such as 19 and 22 do approximate 3/2 reasonably well, and 5/4 better than 12-EDO. But neither 19-EDO nor 22-EDO tunes 7-limit JI very well. For that, the EDO must get even larger. No EDO tunes primes 3, 5 and 7 well until 31-EDO. And prime 3 is worse in 31-EDO than in 12-EDO. The smallest EDO that improves 3, 5 <u>and</u> 7 over 12-EDO is 41-EDO. 53-EDO and 72-EDO are also famous for being very accurate. But a really big EDO like these paradoxically becomes more like JI. There are lots of notes, and you can get everything really in tune, but the sheer complexity is overwhelming. More about EDOs here: [[EDOs]] and here: [[wikipedia:Equal_temperament|en.wikipedia.org/wiki/Equal_temperament]].  
This youtube video [https://www.youtube.com/watch?v=nK2jYk37Rlg The Mathematical Problem with Music, and How to Solve It] is a nice explanation of 5-limit JI and 12-equal, as well as historical tunings like pythagorean and meantone temperament.


== The Kite Guitar ==
== The Kite Guitar ==
Line 103: Line 105:
There's a few other drawbacks. Obviously the closer fret spacing is somewhat less playable (although no worse than a mandolin or ukelele). Omitting half the frets makes finding notes a little harder. Also the major-3rds tuning reduces the overall range of the guitar. Unless you're using an open tuning, or playing with another guitarist, 6 strings is somewhat limiting, and 7 or 8 is best. And of course, there's a learning curve in training your ears to hear all these new sounds. But that's the fun part!
There's a few other drawbacks. Obviously the closer fret spacing is somewhat less playable (although no worse than a mandolin or ukelele). Omitting half the frets makes finding notes a little harder. Also the major-3rds tuning reduces the overall range of the guitar. Unless you're using an open tuning, or playing with another guitarist, 6 strings is somewhat limiting, and 7 or 8 is best. And of course, there's a learning curve in training your ears to hear all these new sounds. But that's the fun part!


Finally, there's subtle pitch shifts of a half-fret sometimes. These are the inevitable result of getting everything more in tune. When you really study harmony, you find that there are more than 7 notes in a major scale. Weird, but true! The good news is that like watching a magician's trick, casual listeners are completely fooled and don't notice the pitch shifts.  
Finally, there's sometimes subtle pitch shifts of a comma. These are the inevitable result of getting everything more in tune. As mentioned, a piece often requires both 9/8 and 10/9. On the Kite guitar, one uses whichever is appropriate at the moment. Sometimes one must use 9/8 immediately before or after 10/9, resulting in a pitch shift of a half-fret, about 30¢. Something similar can happen with 5/3 and 27/16, or with 7/4 and 16/9, etc. The good news is that like watching a magician's trick, casual listeners are usually completely fooled and don't notice the pitch shifts.


So there are disadvantages, but the advantages are enormous. Chords are only a few cents away from JI, and sound great! And there are so many harmonic options. There are four main kinds of 3rds: large major, small major, large minor and small minor. There are likewise four 6ths and four 7ths. There's more of everything: two major chords, two minor chords, two dim7 chords, three augmented chords, four dom7 chords, etc.  
So there are disadvantages, but the advantages are enormous. Chords are only a few cents away from JI, and sound great! And there are so many harmonic options. There are four main kinds of 3rds: large major, small major, large minor and small minor. There are likewise four 6ths and four 7ths. There's more of everything: two major chords, two minor chords, two dim7 chords, three augmented chords, four dom7 chords, etc.  
Line 109: Line 111:
The Kite guitar also gives you lots of melodic options. Going up one fret takes you up about 60¢. This is the perfect size -- barely large enough to feel like a small minor 2nd and not a quartertone. In other words, in the right context, two notes a fret apart can feel like two distinct notes of a scale, and not two microtonal versions of the same note. And yet 60¢ is barely ''small'' enough so that the ear can be fooled by pitch shifts of half a fret (30¢).  
The Kite guitar also gives you lots of melodic options. Going up one fret takes you up about 60¢. This is the perfect size -- barely large enough to feel like a small minor 2nd and not a quartertone. In other words, in the right context, two notes a fret apart can feel like two distinct notes of a scale, and not two microtonal versions of the same note. And yet 60¢ is barely ''small'' enough so that the ear can be fooled by pitch shifts of half a fret (30¢).  


60¢ is also small enough that two frets (120¢) still feels like a minor 2nd, although a large one. Three frets is a small major 2nd and four frets is a large one. Many melodic pathways from note A to note B. And there's more! The next string up has other 2nds in between these. There's a mid-sized minor 2nd of 1.5 frets and a mid-sized major 2nd of 3.5 frets. Right between them is the middle-eastern-sounding 11-limit neutral 2nd of 2.5 frets. All these 2nds are available for heptatonic scales. Or you can use the large major 2nd and the small minor 3rd to make an African-sounding near-equipentatonic scale. Or you can play exotic octotonic, nonotonic and decatonic scales.  
60¢ is also small enough that two frets (120¢) still feels like a minor 2nd, although a large one. Three frets is a small major 2nd and four frets is a large one. Many melodic pathways from one note to another. And there's more! The next string up has other 2nds in between these. There's a mid-sized minor 2nd of 1.5 frets and a mid-sized major 2nd of 3.5 frets. Right between them is the middle-eastern-sounding 11-limit neutral 2nd of 2.5 frets. All these 2nds are available for heptatonic scales. Or you can use the large major 2nd and the small minor 3rd to make an African-sounding near-equipentatonic scale. Or you can play exotic octotonic, nonotonic and decatonic scales.  


Naming all 41 notes in all 41 keys, and all the intervals, scales and chords they make, is no small feat. Kite's [[Ups and Downs Notation|ups and downs]] notation manages it by adding only two symbols to the standard notation. Any notes or chords without these new symbols are as usual. From C to G is still a 5th, a D chord is still D F# A, etc. So all that music theory you spent years learning still holds true. Ups and downs are simply added in. The notes just above/below C are called ^C and vC (up-C and down-C). The intervals slightly wider or narrower than a major 3rd are called ^M3 and vM3 (upmajor 3rd and downmajor 3rd). Chords are named e.g. E^m and vGv7 (E upminor and down-G down-7). Everything has a straightforward logical name.  
Naming all 41 notes in all 41 keys, and all the intervals, scales and chords they make, is no small feat. Kite's [[Ups and downs notation|ups and downs]] notation manages it by adding only two symbols to the standard notation. Any notes or chords without these new symbols are as usual. From C to G is still a 5th, a D chord is still D F# A, etc. So all that music theory you spent years learning still holds true. Ups and downs are simply added in. The notes just above/below C are called ^C and vC (up-C and down-C). The intervals slightly wider or narrower than a major 3rd are called ^M3 and vM3 (upmajor 3rd and downmajor 3rd). Chords are named e.g. E^m and vGv7 (E upminor and down-G down-7). Everything has a straightforward logical name.  


In summary, the Kite guitar offers so much. You can play "normal" music and it sounds cleaner. Complex jazz chords become much less dissonant. You can play barbershop. You can play middle eastern. You can get experimental. You gain so much, and lose so little!
In summary, the Kite guitar offers so much. You can play "normal" music and it sounds cleaner. Complex jazz chords become much less dissonant. You can play barbershop. You can play middle eastern. You can get experimental. You gain so much, and lose so little!


[[Category:Kite Guitar]]
[[Category:Kite Guitar]]