Breedsmic temperaments: Difference between revisions

Amicable: +extensions: amical, amorous, pseudoamical, pseudoamorous, floral, and humorous
 
(48 intermediate revisions by 9 users not shown)
Line 1: Line 1:
This page discusses miscellaneous rank-2 temperaments tempering out the [[breedsma]], {{monzo|-5 -1 -2 4}} = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12EDO, for example) which does not possess a neutral third cannot be tempering out the breedsma.
{{Technical data page}}
This page discusses miscellaneous [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[breedsma]], {{monzo| -5 -1 -2 4 }} = 2401/2400. This is the amount by which two [[49/40]] intervals exceed [[3/2]], and by which two [[60/49]] intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system ([[12edo]], for example) which does not possess a neutral third cannot be tempering out the breedsma.


The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that 49/40 × 10/7 = 7/4 and 49/40 × (10/7)<sup>2</sup> = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.
The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that (49/40)(10/7) = 7/4 and (49/40)(10/7)<sup>2</sup> = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.


Temperaments discussed elsewhere include:  
Temperaments discussed elsewhere include:  
* ''[[Decimal]]'', {25/24, 49/48} → [[Dicot family #Decimal]]
* ''[[Decimal]]'' (+25/24, 49/48 or 50/49) → [[Dicot family #Decimal|Dicot family]]
* ''[[Beatles]]'', {64/63, 686/675} → [[Archytas clan #Beatles]]
* ''[[Beatles]]'' (+64/63 or 686/675) → [[Archytas clan #Beatles|Archytas clan]]
* [[Squares]], {81/80, 2401/2400} → [[Meantone family #Squares]]
* [[Squares]] (+81/80) → [[Meantone family #Squares|Meantone family]]
* [[Myna]], {126/125, 1728/1715} → [[Starling temperaments #Myna]]
* [[Myna]] (+126/125) → [[Starling temperaments #Myna|Starling temperaments]]
* [[Miracle]], {225/224, 1029/1024} → [[Gamelismic clan #Miracle]]
* [[Miracle]] (+225/224) → [[Gamelismic clan #Miracle|Gamelismic clan]]
* ''[[Octacot]]'', {245/243, 2401/2400} → [[Tetracot family #Octacot]]
* ''[[Octacot]]'' (+245/243) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Greenwood]]'', {405/392, 1323/1280} → [[Greenwoodmic temperaments #Greenwood]]
* ''[[Greenwood]]'' (+405/392 or 1323/1280) → [[Greenwoodmic temperaments #Greenwood|Greenwoodmic temperaments]]
* ''[[Quasitemp]]'', {875/864, 2401/2400} → [[Keemic temperaments #Quasitemp]]
* ''[[Quasitemp]]'' (+875/864) → [[Keemic temperaments #Quasitemp|Keemic temperaments]]
* ''[[Quadrimage]]'', {2401/2400, 3125/3072} → [[Magic family #Quadrimage]]
* ''[[Quadrasruta]]'' (+2048/2025) → [[Diaschismic family #Quadrasruta|Diaschismic family]]
* ''[[Hemiwürschmidt]]'', {2401/2400, 3136/3125} → [[Würschmidt family #Hemiwürschmidt]]
* ''[[Quadrimage]]'' (+3125/3072) → [[Magic family #Quadrimage|Magic family]]
* [[Ennealimmal]], {2401/2400, 4375/4374} → [[Ragismic microtemperaments #Ennealimmal]]
* ''[[Hemiwürschmidt]]'' (+3136/3125 or 6144/6125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]]
* ''[[Quadritikleismic]]'', {2401/2400, 15625/15552} → [[Kleismic family #Quadritikleismic]]
* [[Ennealimmal]] (+4375/4374) → [[Ragismic microtemperaments #Ennealimmal|Ragismic microtemperaments]]
* ''[[Sesquiquartififths]]'', {2401/2400, 32805/32768} → [[Schismatic family #Sesquiquartififths]]
* ''[[Quadritikleismic]]'' (+15625/15552) → [[Kleismic family #Quadritikleismic|Kleismic family]]
* ''[[Neptune]]'', {2401/2400, 48828125/48771072} → [[Gammic family #Neptune]]
* [[Harry]] (+19683/19600) → [[Gravity family #Harry|Gravity family]]
* ''[[Eagle]]'', {2401/2400, 10485760000/10460353203} → [[Vulture family #Eagle]]
* ''[[Sesquiquartififths]]'' (+32805/32768) → [[Schismatic family #Sesquiquartififths|Schismatic family]]
* ''[[Amicable]]'' (+1600000/1594323) → [[Amity family #Amicable|Amity family]]
* ''[[Neptune]]'' (+48828125/48771072) → [[Gammic family #Neptune|Gammic family]]
* ''[[Decoid]]'' (+67108864/66976875) → [[Quintosec family #Decoid|Quintosec family]]
* ''[[Tertiseptisix]]'' (+390625000/387420489) → [[Quartonic family #Tertiseptisix|Quartonic family]]
* ''[[Eagle]]'' (+10485760000/10460353203) → [[Vulture family #Eagle|Vulture family]]


== Hemififths ==
== Hemififths ==
{{Main| Hemififths }}
{{Main| Hemififths }}


Hemififths tempers out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator, with [[99edo|99EDO]] and [[140edo|140EDO]] providing good tunings, and [[239edo|239EDO]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5s, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7s. It may be called the 41&amp;58 temperament. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS{{clarify}}.
Hemififths may be described as the {{nowrap| 41 & 58 }} temperament, tempering out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator; its [[ploidacot]] is dicot. [[99edo]] and [[140edo]] provides good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}.


By adding [[243/242]] (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99EDO is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice.
By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99edo is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 5120/5103
[[Comma list]]: 2401/2400, 5120/5103


[[Mapping]]: [{{val| 1 1 -5 -1 }}, {{val| 0 2 25 13 }}]
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }}


{{Multival|legend=1| 2 25 13 35 15 -40 }}
: mapping generators: ~2, ~49/40


[[POTE generator]]: ~49/40 = 351.477
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~49/40 = 351.4464
: [[error map]]: {{val| 0.0000 +0.9379 -0.1531 -0.0224 }}
* [[POTE]]: ~2 = 1200.0000, ~49/40 = 351.4774
: error map: {{val| 0.0000 +0.9999 +0.6221 +0.0307 }}


[[Minimax tuning]]:
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo|1/5 0 1/25}}
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }}
: [{{monzo|1 0 0 0}}, {{monzo|7/5 0 2/25 0}}, {{monzo|0 0 1 0}}, {{monzo|8/5 0 13/25 0}}]
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }}
: Eigenmonzos: 2, 5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Algebraic generator]]: (2 + sqrt(2))/2
[[Algebraic generator]]: (2 + sqrt(2))/2


{{Val list|legend=1| 41, 58, 99, 239, 338, 1253bbc, 1591bbc }}
{{Optimal ET sequence|legend=1| 41, 58, 99, 239, 338 }}


[[Badness]]: 0.022243
[[Badness]] (Smith): 0.022243


=== 11-limit ===
=== 11-limit ===
Line 53: Line 63:
Comma list: 243/242, 441/440, 896/891
Comma list: 243/242, 441/440, 896/891


Mapping: [{{val| 1 1 -5 -1 2 }}, {{val| 0 2 25 13 5 }}]
Mapping: {{mapping| 1 1 -5 -1 2 | 0 2 25 13 5 }}


POTE generator: ~11/9 = 351.521
Optimal tunings:
* CTE: ~2 = 1200.0000, ~11/9 = 351.4289
* POTE: ~2 = 1200.0000, ~11/9 = 351.5206


Vals: {{Val list| 17c, 41, 58, 99e }}
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99e }}


Badness: 0.023498
Badness (Smith): 0.023498


==== 13-limit ====
==== 13-limit ====
Line 66: Line 78:
Comma list: 144/143, 196/195, 243/242, 364/363
Comma list: 144/143, 196/195, 243/242, 364/363


Mapping: [{{val| 1 1 -5 -1 2 4 }}, {{val| 0 2 25 13 5 -1 }}]
Mapping: {{mapping| 1 1 -5 -1 2 4 | 0 2 25 13 5 -1 }}


POTE generator: ~11/9 = 351.573
Optimal tunings:
* CTE: ~2 = 1200.0000, ~11/9 = 351.4331
* POTE: ~2 = 1200.0000, ~11/9 = 351.5734


Vals: {{Val list| 17c, 41, 58, 99ef }}
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99ef, 157eff }}


Badness: 0.019090
Badness (Smith): 0.019090


=== Semihemi ===
=== Semihemi ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3388/3375, 9801/9800
Comma list: 2401/2400, 3388/3375, 5120/5103


Mapping: [{{val| 2 0 -35 -15 -47 }}, {{val| 0 2 25 13 34 }}]
Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }}


POTE generator: ~49/40 = 351.505
: mapping generators: ~99/70, ~400/231


Vals: {{Val list| 58, 140, 198, 734bc, 932bcd, 1130bcd }}
Optimal tunings:  
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4722
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5047


Badness: 0.042487
{{Optimal ET sequence|legend=0| 58, 140, 198 }}
 
Badness (Smith): 0.042487


==== 13-limit ====
==== 13-limit ====
Line 92: Line 110:
Comma list: 352/351, 676/675, 847/845, 1716/1715
Comma list: 352/351, 676/675, 847/845, 1716/1715


Mapping: [{{val| 2 0 -35 -15 -47 -37 }}, {{val| 0 2 25 13 34 28 }}]
Mapping: {{mapping| 2 0 -35 -15 -47 -37 | 0 2 25 13 34 28 }}
 
Optimal tunings:
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4674
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5019
 
{{Optimal ET sequence|legend=0| 58, 140, 198, 536f }}
 
Badness (Smith): 0.021188
 
=== Quadrafifths ===
This has been logged as ''semihemififths'' in Graham Breed's temperament finder, but ''quadrafifths'' arguably makes more sense because it straight-up splits the fifth in four.
 
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 3025/3024, 5120/5103
 
Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }}
 
: Mapping generators: ~2, ~243/220
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~243/220 = 175.7284
* POTE: ~2 = 1200.0000, ~243/220 = 175.7378
 
{{Optimal ET sequence|legend=0| 41, 157, 198, 239, 676b, 915be }}
 
Badness (Smith): 0.040170
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 352/351, 847/845, 2401/2400, 3025/3024
 
Mapping: {{mapping| 1 1 -5 -1 8 10 | 0 4 50 26 -31 -43 }}


POTE generator: ~49/40 = 351.502
Optimal tunings:
* CTE: ~2 = 1200.0000, ~72/65 = 175.7412
* POTE: ~2 = 1200.0000, ~72/65 = 175.7470


Vals: {{Val list| 58, 140, 198, 536f, 734bcf, 932bcdf }}
{{Optimal ET sequence|legend=0| 41, 157, 198, 437f, 635bcff }}


Badness: 0.021188
Badness (Smith): 0.031144


== Tertiaseptal ==
== Tertiaseptal ==
{{Main| Tertiaseptal }}
{{Main| Tertiaseptal }}


Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31&amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo|171EDO]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.
Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 &amp; 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning, although 171edo - [[31edo]] = [[140edo]] also makes sense, and in very high limits 140edo + 171edo = [[311edo]] is especially notable. The 15- or 16-note mos can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 65625/65536
[[Comma list]]: 2401/2400, 65625/65536


[[Mapping]]: [{{val| 1 3 2 3 }}, {{val| 0 -22 5 -3 }}]
{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }}


{{Multival|legend=1| 22 -5 3 -59 -57 21 }}
: Mapping generators: ~2, ~256/245


[[POTE generator]]: ~256/245 = 77.191
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~256/245 = 77.191


{{Val list|legend=1| 31, 109, 140, 171 }}
{{Optimal ET sequence|legend=1| 31, 109, 140, 171 }}


[[Badness]]: 0.012995
[[Badness]]: 0.012995
Line 124: Line 178:
Comma list: 243/242, 441/440, 65625/65536
Comma list: 243/242, 441/440, 65625/65536


Mapping: [{{val| 1 3 2 3 7 }}, {{val| 0 -22 5 -3 -55 }}]
Mapping: {{mapping| 1 3 2 3 7 | 0 -22 5 -3 -55 }}


POTE generator: ~256/245 = 77.227
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.227


Vals: {{Val list| 31, 109e, 140e, 171, 202 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171, 202 }}


Badness: 0.035576
Badness: 0.035576
Line 137: Line 191:
Comma list: 243/242, 441/440, 625/624, 3584/3575
Comma list: 243/242, 441/440, 625/624, 3584/3575


Mapping: [{{val| 1 3 2 3 7 1 }}, {{val| 0 -22 5 -3 -55 42 }}]
Mapping: {{mapping| 1 3 2 3 7 1 | 0 -22 5 -3 -55 42 }}


POTE generator: ~117/112 = 77.203
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.203


Vals: {{Val list| 31, 109e, 140e, 171 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171 }}


Badness: 0.036876
Badness: 0.036876
Line 150: Line 204:
Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575
Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575


Mapping: [{{val| 1 3 2 3 7 1 1 }}, {{val| 0 -22 5 -3 -55 42 48 }}]
Mapping: {{mapping| 1 3 2 3 7 1 1 | 0 -22 5 -3 -55 42 48 }}


POTE generator: ~68/65 = 77.201
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.201


Vals: {{Val list| 31, 109eg, 140e, 171 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109eg, 140e, 171 }}


Badness: 0.027398
Badness: 0.027398
Line 163: Line 217:
Comma list: 385/384, 1331/1323, 1375/1372
Comma list: 385/384, 1331/1323, 1375/1372


Mapping: [{{val| 1 3 2 3 5 }}, {{val| 0 -22 5 -3 -24 }}]
Mapping: {{mapping| 1 3 2 3 5 | 0 -22 5 -3 -24 }}


POTE generator: ~22/21 = 77.173
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.173


Vals: {{Val list| 31, 109, 140, 171e, 311e }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 171e, 311e }}


Badness: 0.030171
Badness: 0.030171
Line 176: Line 230:
Comma list: 352/351, 385/384, 625/624, 1331/1323
Comma list: 352/351, 385/384, 625/624, 1331/1323


Mapping: [{{val| 1 3 2 3 5 1 }}, {{val| 0 -22 5 -3 -24 42 }}]
Mapping: {{mapping| 1 3 2 3 5 1 | 0 -22 5 -3 -24 42 }}


POTE generator: ~22/21 = 77.158
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.158


Vals: {{Val list| 31, 109, 140, 311e, 451ee }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 311e, 451ee }}


Badness: 0.028384
Badness: 0.028384
Line 189: Line 243:
Comma list: 352/351, 385/384, 561/560, 625/624, 715/714
Comma list: 352/351, 385/384, 561/560, 625/624, 715/714


Mapping: [{{val| 1 3 2 3 5 1 1 }}, {{val| 0 -22 5 -3 -24 42 48 }}]
Mapping: {{mapping| 1 3 2 3 5 1 1 | 0 -22 5 -3 -24 42 48 }}


POTE generator: ~22/21 = 77.162
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.162


Vals: {{Val list| 31, 109g, 140, 311e, 451ee }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109g, 140, 311e, 451ee }}


Badness: 0.022416
Badness: 0.022416


=== Hemitert ===
=== Tertiaseptia ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 65625/65536
Comma list: 2401/2400, 6250/6237, 65625/65536


Mapping: [{{val| 1 3 2 3 6 }}, {{val| 0 -44 10 -6 -79 }}]
Mapping: {{mapping| 1 3 2 3 -4 | 0 -22 5 -3 116 }}


POTE generator: ~45/44 = 38.596
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.169


Vals: {{Val list| 31, 280, 311, 342 }}
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1695c, 2006bcd, 2317bcd, 2628bccde, 2939bccde, 3250bccde }}


Badness: 0.015633
Badness: 0.056926


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095
Comma list: 625/624, 2080/2079, 2200/2197, 2401/2400


Mapping: [{{val| 1 3 2 3 6 1 }}, {{val| 0 -44 10 -6 -79 84 }}]
Mapping: {{mapping| 1 3 2 3 -4 1 | 0 -22 5 -3 116 42 }}


POTE generator: ~45/44 = 38.588
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.168


Vals: {{Val list| 31, 280, 311, 964f, 1275f, 1586cff }}
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1073, 1384cf, 1695cf, 2006bcdf }}


Badness: 0.033573
Badness: 0.027474


==== 17-limit ====
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095
Comma list: 595/594, 625/624, 833/832, 1156/1155, 2200/2197


Mapping: [{{val| 1 3 2 3 6 1 1 }}, {{val| 0 -44 10 -6 -79 84 96 }}]
Mapping: {{mapping| 1 3 2 3 -4 1 1 | 0 -22 5 -3 116 42 48 }}


POTE generator: ~45/44 = 38.589
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169


Vals: {{Val list| 31, 280, 311, 653f, 964f }}
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


Badness: 0.025298
Badness: 0.018773


== Harry ==
==== 19-limit ====
{{Main| Harry }}
Subgroup: 2.3.5.7.11.13.17.19
{{see also| Gravity family #Harry }}


Harry adds [[cataharry comma|cataharry]], 19683/19600, to the set of commas. It may be described as the 58&amp;72 temperament. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.
Comma list: 595/594, 625/624, 833/832, 1156/1155, 1216/1215, 2200/2197


Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is {{multival| 12 34 20 30 …}}.
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 | 0 -22 5 -3 116 42 48 -105 }}


Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with {{multival| 12 34 20 30 52 …}} as the octave wedgie. [[130edo|130EDO]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169


Subgroup: 2.3.5.7
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1384cfgg, 1695cfgg, 2006bcdfgg }}


[[Comma list]]: 2401/2400, 19683/19600
Badness: 0.017653


[[Mapping]]: [{{val| 2 4 7 7 }}, {{val| 0 -6 -17 -10 }}]
==== 23-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23


{{Multival|legend=1| 12 34 20 26 -2 -49 }}
Comma list: 595/594, 625/624, 833/832, 875/874, 1105/1104, 1156/1155, 1216/1215


[[POTE generator]]: ~21/20 = 83.156
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 | 0 -22 5 -3 116 42 48 -105 117 }}


{{Val list|legend=1| 14c, 58, 72, 130, 202, 534, 736b, 938b }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.168


[[Badness]]: 0.034077
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfgg }}


=== 11-limit ===
Badness: 0.015123
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 4000/3993
==== 29-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29


Mapping: [{{val| 2 4 7 7 9 }}, {{val| 0 -6 -17 -10 -15 }}]
Comma list: 595/594, 625/624, 784/783, 833/832, 875/874, 1015/1014, 1105/1104, 1156/1155


POTE generator: ~21/20 = 83.167
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 | 0 -22 5 -3 116 42 48 -105 117 60 }}


Vals: {{Val list| 14c, 58, 72, 130, 202 }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.167


Badness: 0.015867
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfggj }}


=== 13-limit ===
Badness: 0.012181
Subgroup: 2.3.5.7.11.13


Comma list: 243/242, 351/350, 364/363, 441/440
==== 31-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31


Mapping: [{{val| 2 4 7 7 9 11 }}, {{val| 0 -6 -17 -10 -15 -26 }}]
Comma list: 595/594, 625/624, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014


POTE generator: ~21/20 = 83.116
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 | 0 -22 5 -3 116 42 48 -105 117 60 -94 }}


Vals: {{Val list| 14cf, 58, 72, 130, 332f, 462ef }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169


Badness: 0.013046
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


=== 17-limit ===
Badness: 0.012311
Subgroup: 2.3.5.7.11.13.17


Comma list: 221/220, 243/242, 289/288, 351/350, 441/440
==== 37-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37


Mapping: [{{val| 2 4 7 7 9 11 9 }}, {{val| 0 -6 -17 -10 -15 -26 -6 }}]
Comma list: 595/594, 625/624, 703/702, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014


POTE generator: ~21/20 = 83.168
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 }}


Vals: {{Val list| 14cf, 58, 72, 130, 202g }}
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.170


Badness: 0.012657
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


== Quasiorwell ==
Badness: 0.010949
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = {{monzo|22 -1 -10 1}}. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)<sup>1/8</sup>, giving just 7s, or 384<sup>1/38</sup>, giving pure fifths.


Adding 3025/3024 extends to the 11-limit and gives {{multival| 38 -3 8 64 …}} for the initial wedgie, and as expected, 270 remains an excellent tuning.
==== 41-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41


Subgroup: 2.3.5.7
Comma list: 595/594, 625/624, 697/696, 703/702, 714/713, 784/783, 820/819, 833/832, 875/874, 900/899, 931/930


[[Comma list]]: 2401/2400, 29360128/29296875
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 6 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 -10 }}


[[Mapping]]: [{{val|1 31 0 9}}, {{val|0 -38 3 -8}}]
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169


{{Multival|legend=1| 38 -3 8 -93 -94 27 }}
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}


[[POTE generator]]: ~1024/875 = 271.107
Badness: 0.009825


{{Val list|legend=1| 31, 177, 208, 239, 270, 571, 841, 1111 }}
=== Hemitert ===
Subgroup: 2.3.5.7.11


[[Badness]]: 0.035832
Comma list: 2401/2400, 3025/3024, 65625/65536


=== 11-limit ===
Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }}
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 5632/5625
: Mapping generators: ~2, ~45/44


Mapping: [{{val|1 31 0 9 53}}, {{val|0 -38 3 -8 -64}}]
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596


POTE generator: ~90/77 = 271.111
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 342 }}


Vals: {{Val list| 31, 208, 239, 270 }}
Badness: 0.015633


Badness: 0.017540
==== 13-limit ====
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1001/1000, 1716/1715, 3025/3024, 4096/4095
Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095


Mapping: [{{val|1 31 0 9 53 -59}}, {{val|0 -38 3 -8 -64 81}}]
Mapping: {{mapping| 1 3 2 3 6 1 | 0 -44 10 -6 -79 84 }}


POTE generator: ~90/77 = 271.107
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.588


Vals: {{Val list| 31, 239, 270, 571, 841, 1111 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 964f, 1275f, 1586cff }}


Badness: 0.017921
Badness: 0.033573


== Decoid ==
==== 17-limit ====
{{see also| Qintosec family #Decoid }}
Subgroup: 2.3.5.7.11.13.17


Decoid tempers out 2401/2400 and 67108864/66976875, as well as the [[15/14ths equal temperament|linus comma]], {{monzo| 11 -10 -10 10 }}. Either 8/7 or 16/15 can be used its generator. It may be described as the 130&amp;270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice. It is also described as an extension of the [[Qintosec family|qintosec temperament]].
Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095


Subgroup: 2.3.5.7
Mapping: {{mapping| 1 3 2 3 6 1 1 | 0 -44 10 -6 -79 84 96 }}


[[Comma list]]: 2401/2400, 67108864/66976875
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.589


[[Mapping]]: [{{val| 10 0 47 36 }}, {{val| 0 2 -3 -1 }}]
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 653f, 964f }}


Mapping generators: ~15/14, ~8192/4725
Badness: 0.025298
 
{{Multival|legend=1| 20 -30 -10 -94 -72 61 }}
 
[[POTE generator]]: ~16/15 = 111.099


{{Val list|legend=1| 10, 130, 270, 2020c, 2290c, 2560c, 2830bc, 3100bcc, 3370bcc, 3640bcc }}
=== Semitert ===
 
[[Badness]]: 0.033902
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 5632/5625, 9801/9800
Comma list: 2401/2400, 9801/9800, 65625/65536


Mapping: [{{val| 10 0 47 36 98 }}, {{val| 0 2 -3 -1 -8 }}]
Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }}


POTE generator: ~16/15 = 111.070
: Mapping generators: ~99/70, ~256/245


Vals: {{Val list| 10e, 130, 270, 670, 940, 1210, 2150c }}
Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193


Badness: 0.018735
Optimal ET sequence: {{Optimal ET sequence| 62e, 140, 202, 342 }}


=== 13-limit ===
Badness: 0.025790
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 1716/1715, 4096/4095
== Quasiorwell ==
In addition to 2401/2400, quasiorwell tempers out the quasiorwellisma, 29360128/29296875 = {{monzo| 22 -1 -10 1 }}. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31 &amp; 270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)<sup>1/8</sup>, giving just 7's, or 384<sup>1/38</sup>, giving pure fifths.


Mapping: [{{val| 10 0 47 36 98 37 }}, {{val| 0 2 -3 -1 -8 0 }}]
Adding 3025/3024 extends to the 11-limit and as expected, 270 remains an excellent tuning.


POTE generator: ~16/15 = 111.083
[[Subgroup]]: 2.3.5.7


Vals: {{Val list| 10e, 130, 270, 940, 1210f, 1480cf }}
[[Comma list]]: 2401/2400, 29360128/29296875
 
Badness: 0.013475


== Neominor ==
{{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }}
The generator for neominor temperament is tridecimal minor third [[13/11]], also known as ''Neo-gothic minor third''.


Subgroup: 2.3.5.7
: Mapping generators: ~2, ~875/512


[[Comma list]]: 2401/2400, 177147/175616
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1024/875 = 271.107


[[Mapping]]: [{{val|1 3 12 8}}, {{val|0 -6 -41 -22}}]
{{Optimal ET sequence|legend=1| 31, 177, 208, 239, 270, 571, 841, 1111 }}


{{Multival|legend=1|6 41 22 51 18 -64}}
[[Badness]]: 0.035832
 
[[POTE generator]]: ~189/160 = 283.280
 
{{Val list|legend=1| 72, 161, 233, 305 }}
 
[[Badness]]: 0.088221


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 35937/35840
Comma list: 2401/2400, 3025/3024, 5632/5625


Mapping: [{{val|1 3 12 8 7}}, {{val|0 -6 -41 -22 -15}}]
Mapping: {{mapping| 1 31 0 9 53 | 0 -38 3 -8 -64 }}


POTE generator: ~33/28 = 283.276
Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.111


Vals: {{Val list| 72, 161, 233, 305 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 208, 239, 270 }}


Badness: 0.027959
Badness: 0.017540


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 243/242, 364/363, 441/440
Comma list: 1001/1000, 1716/1715, 3025/3024, 4096/4095


Mapping: [{{val|1 3 12 8 7 7}}, {{val|0 -6 -41 -22 -15 -14}}]
Mapping: {{mapping| 1 31 0 9 53 -59 | 0 -38 3 -8 -64 81 }}


POTE generator: ~13/11 = 283.294
Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.107


Vals: {{Val list| 72, 161f, 233f }}
Optimal ET sequence: {{Optimal ET sequence| 31, 239, 270, 571, 841, 1111 }}


Badness: 0.026942
Badness: 0.017921


== Emmthird ==
== Neominor ==
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.
The generator for neominor temperament is tridecimal minor third [[13/11]], also known as ''Neo-gothic minor third''.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 14348907/14336000
[[Comma list]]: 2401/2400, 177147/175616


[[Mapping]]: [{{val|1 -3 -17 -8}}, {{val|0 14 59 33}}]
{{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }}


{{Multival|legend=1|14 59 33 61 13 -89}}
: Mapping generators: ~2, ~189/160


[[POTE generator]]: ~2744/2187 = 392.988
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~189/160 = 283.280


{{Val list|legend=1| 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d }}
{{Optimal ET sequence|legend=1| 72, 161, 233, 305 }}


[[Badness]]: 0.016736
[[Badness]]: 0.088221
 
== Quinmite ==
The generator for quinmite is quasi-tempered minor third 25/21, flatter than 6/5 by the starling comma, 126/125. It is also generated by 1/5 of minor tenth 12/5, and its name is a play on the words "quintans" (Latin for "one fifth") and "minor tenth".
 
Subgroup: 2.3.5.7
 
[[Comma list]]: 2401/2400, 1959552/1953125
 
[[Mapping]]: [{{val|1 -7 -5 -3}}, {{val|0 34 29 23}}]
 
{{Multival|legend=1|34 29 23 -33 -59 -28}}
 
[[POTE generator]]: ~25/21 = 302.997
 
{{Val list|legend=1| 95, 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }}
 
[[Badness]]: 0.037322
 
== Unthirds ==
The generator for unthirds temperament is undecimal major third, 14/11.
 
Subgroup: 2.3.5.7
 
[[Comma list]]: 2401/2400, 68359375/68024448
 
[[Mapping]]: [{{val|1 -13 -14 -9}}, {{val|0 42 47 34}}]
 
{{Multival|legend=1|42 47 34 -23 -64 -53}}
 
[[POTE generator]]: ~3969/3125 = 416.717
 
{{Val list|legend=1| 72, 167, 239, 311, 694, 1005c }}
 
[[Badness]]: 0.075253


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 4000/3993
Comma list: 243/242, 441/440, 35937/35840


Map: [{{val|1 -13 -14 -9 -8}}, {{val|0 42 47 34 33}}]
Mapping: {{mapping| 1 3 12 8 7 | 0 -6 -41 -22 -15 }}


POTE generator: ~14/11 = 416.718
Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 283.276


Vals: {{Val list| 72, 167, 239, 311, 1316c }}
Optimal ET sequence: {{Optimal ET sequence| 72, 161, 233, 305 }}


Badness: 0.022926
Badness: 0.027959


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400
Comma list: 169/168, 243/242, 364/363, 441/440


Mapping: [{{val|1 -13 -14 -9 -9 -47}}, {{val|0 42 47 34 33 146}}]
Mapping: {{mapping| 1 3 12 8 7 7 | 0 -6 -41 -22 -15 -14 }}


POTE generator: ~14/11 = 416.716
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 283.294


Vals: {{Val list| 72, 311, 694, 1005c, 1699cd }}
Optimal ET sequence: {{Optimal ET sequence| 72, 161f, 233f }}


Badness: 0.020888
Badness: 0.026942


== Newt ==
== Emmthird ==
This temperament has a generator of neutral third (0.2 cents flat of [[49/40]]) and tempers out the [[garischisma]].
The generator for emmthird is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 33554432/33480783
[[Comma list]]: 2401/2400, 14348907/14336000


[[Mapping]]: [{{val|1 1 19 11}}, {{val|0 2 -57 -28}}]
{{Mapping|legend=1| 1 11 42 25 | 0 -14 -59 -33 }}


{{Multival|legend=1|2 -57 -28 -95 -50 95}}
: Mapping generators: ~2, ~2187/1372


[[POTE generator]]: ~49/40 = 351.113
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988


{{Val list|legend=1| 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bbcc }}
{{Optimal ET sequence|legend=1| 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d }}


[[Badness]]: 0.041878
[[Badness]]: 0.016736


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 19712/19683
Comma list: 243/242, 441/440, 1792000/1771561


Mapping: [{{val|1 1 19 11 -10}}, {{val|0 2 -57 -28 46}}]
Mapping: {{mapping| 1 11 42 25 27 | 0 -14 -59 -33 -35 }}


POTE generator: ~49/40 = 351.115
Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991


Vals: {{Val list| 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b }}
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}


Badness: 0.019461
Badness: 0.052358


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 2080/2079, 2401/2400, 3025/3024, 4096/4095
Comma list: 243/242, 364/363, 441/440, 2200/2197
 
Mapping: [{{val|1 1 19 11 -10 -20}}, {{val|0 2 -57 -28 46 81}}]


POTE generator: ~49/40 = 351.117
Mapping: {{mapping| 1 11 42 25 27 38 | 0 -14 -59 -33 -35 -51 }}


Vals: {{Val list| 41, 229, 270, 581, 851, 2283b, 3134b }}
Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989


Badness: 0.013830
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}


== Amicable ==
Badness: 0.026974
{{see also| Amity family }}


The amicable temperament tempers out the [[amity comma]] and the [[canousma]] in addition to the breedsma, and is closely associated with the canou temperament.  
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.
Comma list: 243/242, 364/363, 441/440, 595/594, 2200/2197


Subgroup: 2.3.5.7
Mapping: {{mapping| 1 -3 -17 -8 -8 -13 9 | 0 14 59 33 35 51 -15 }}


[[Comma list]]: 2401/2400, 1600000/1594323
Optimal tuning (POTE): ~2 = 1\1, ~64/51 = 392.985


[[Mapping]]: [{{val|1 3 6 5}}, {{val|0 -20 -52 -31}}]
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}


{{Multival|legend=1|20 52 31 36 -7 -74}}
Badness: 0.023205


[[POTE generator]]: ~21/20 = 84.880
== Quinmite ==
The generator for quinmite is quasi-tempered minor third [[25/21]], flatter than 6/5 by the starling comma, [[126/125]]. It is also generated by 1/5 of minor tenth 12/5, and its name is a play on the words "quintans" (Latin for "one fifth") and "minor tenth", given by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_104268.html Yahoo! Tuning Group | ''2D temperament names, part I -- reclassified temperaments from message #101780'']</ref>.


{{Val list|legend=1| 99, 212, 311, 410, 1131, 1541b }}
[[Subgroup]]: 2.3.5.7


[[Badness]]: 0.045473
[[Comma list]]: 2401/2400, 1959552/1953125


=== Amical ===
{{Mapping|legend=1| 1 27 24 20 | 0 -34 -29 -23 }}
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 131072/130977, 1600000/1594323
: Mapping generators: ~2, ~42/25


Mapping: [{{val| 1 3 6 5 -8 }}, {{val| 0 -20 -52 -31 162 }}]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997


Vals: {{val list| 99, 212e, 311, 410, 721, 1032, 1343 }}
{{Optimal ET sequence|legend=1| 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }}


Badness: 0.101
[[Badness]]: 0.037322


==== 13-limit ====
== Unthirds ==
Subgroup: 2.3.5.7.11.13
Despite the complexity of its mapping, unthirds is an important temperament to the structure of the [[11-limit]]; this is hinted at by unthirds' representation as the [[72edo|72]] & [[311edo|311]] temperament, the [[Temperament merging|join]] of two tuning systems well-known for their high accuracy in the 11-limit and [[41-limit]] respectively. It is generated by the interval of [[14/11]] ('''un'''decimal major '''third''', hence the name) tuned less than a cent flat, and the 23-note [[MOS]] this interval generates serves as a well temperament of, of all things, [[23edo]]. The 49-note MOS is needed to access the 3rd, 5th, 7th, and 11th harmonics, however.


Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206
The commas it tempers out include the [[breedsma]] (2401/2400), the [[lehmerisma]] (3025/3024), the [[pine comma]] (4000/3993), the [[unisquary comma]] (12005/11979), the [[argyria]] (41503/41472), and 42875/42768, all of which appear individually in various 11-limit systems. It is also notable that there is a [[restriction]] of the temperament to the 2.5/3.7/3.11/3 [[fractional subgroup]] that tempers out 3025/3024 and 12005/11979, which is of considerably less complexity, and which is shared with [[sqrtphi]] (whose generator is tuned flat of 72edo's).


Mapping: [{{val| 1 3 6 5 -8 -5 }}, {{val| 0 -20 -52 -31 162 123 }}]
[[Subgroup]]: 2.3.5.7


Vals: {{val list| 99, 212ef, 311, 410, 721, 1032 }}
[[Comma list]]: 2401/2400, 68359375/68024448


Badness: 0.0499
{{Mapping|legend=1| 1 29 33 25 | 0 -42 -47 -34 }}


=== Amorous ===
: Mapping generators: ~2, ~6125/3888
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 6250/6237, 19712/19683
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3969/3125 = 416.717


Mapping: [{{val| 1 3 6 5 14 }}, {{val| 0 -20 -52 -31 -149 }}]
{{Optimal ET sequence|legend=1| 72, 167, 239, 311, 694, 1005c }}


POTE generator: ~21/20 = 84.8896
[[Badness]]: 0.075253


Vals: {{val list| 99e, 212, 311, 1145c, 1456cd }}
=== 11-limit ===
 
Badness: 0.0489
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647
 
Mapping: [{{val| 1 3 6 5 14 17 }}, {{val| 0 -20 -52 -31 -149 -188 }}]
 
POTE generator: ~21/20 = 84.8910
 
Vals: {{val list| 99ef, 212, 311, 834, 1145c }}
 
Badness: 0.0347
 
=== Pseudoamical ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 385/384, 1375/1372, 1600000/1594323
Comma list: 2401/2400, 3025/3024, 4000/3993


Mapping: [{{val| 1 3 6 5 -1 }}, {{val| 0 -20 -52 -31 63 }}]
Mapping: {{mapping| 1 29 33 25 25 | 0 -42 -47 -34 -33 }}


POTE generator: ~21/20 = 84.9091
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718


Vals: {{val list| 99, 113, 212, 961ccdeee }}
Optimal ET sequence: {{Optimal ET sequence| 72, 167, 239, 311 }}


Badness: 0.0858
Badness: 0.022926


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 325/324, 385/384, 1375/1372, 19773/19712
Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400


Mapping: [{{val| 1 3 6 5 -1 2 }}, {{val| 0 -20 -52 -31 63 24 }}]
Mapping: {{mapping| 1 29 33 25 25 99 | 0 -42 -47 -34 -33 -146 }}


POTE generator: ~21/20 = 84.9127
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716


Vals: {{val list| 99, 113, 212, 537cdeff, 749ccdeefff }}
Optimal ET sequence: {{Optimal ET sequence| 72, 239f, 311, 694, 1005c }}


Badness: 0.0470
Badness: 0.020888


=== Pseudoamorous ===
== Newt ==
Subgroup: 2.3.5.7.11
Newt has a generator of a neutral third (0.2 cents flat of [[49/40]]) and tempers out the [[garischisma]]. It can be described as the 41 & 270 temperament, and extends naturally to the no-17 19-limit, a.k.a. '''neonewt'''. [[270edo]] and [[311edo]] are obvious tuning choices, but [[581edo]] and especially [[851edo]] work much better.


Comma list: 243/242, 441/440, 980000/970299
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 1 3 6 5 7 }}, {{val| 0 -20 -52 -31 -50 }}]
[[Comma list]]: 2401/2400, 33554432/33480783


POTE generator: ~21/20 = 84.9164
{{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }}


Vals: {{val list| 99e, 212e }}
: mapping generators: ~2, ~49/40


Badness: 0.0566
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113


==== 13-limit ====
{{Optimal ET sequence|legend=1| 41, 147c, 188, 229, 270, 1121, 1391, 1661, 1931, 2201 }}
Subgroup: 2.3.5.7.11.13


Comma list: 243/242, 364/363, 441/440, 1875/1859
[[Badness]]: 0.041878


Mapping: [{{val| 1 3 6 5 7 10 }}, {{val| 0 -20 -52 -31 -50 -89 }}]
=== 11-limit ===
 
POTE generator: ~21/20 = 84.9164
 
Vals: {{val list| 99ef, 113, 212ef }}
 
Badness: 0.0428
 
=== Floral ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 9801/9800, 14641/14580
Comma list: 2401/2400, 3025/3024, 19712/19683


Mapping: [{{val| 2 6 12 10 13 }}, {{val| 0 -20 -52 -31 -43 }}]
Mapping: {{mapping| 1 1 19 11 -10 | 0 2 -57 -28 46 }}


POTE generator: ~21/20 = 84.8788
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115


Vals: {{val list| 198, 212, 410 }}
Optimal ET sequence: {{Optimal ET sequence| 41, 147ce, 188, 229, 270, 581, 851, 1121, 1972 }}


Badness: 0.0651
Badness: 0.019461


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580
Comma list: 2080/2079, 2401/2400, 3025/3024, 4096/4095


Mapping: [{{val| 2 6 12 10 13 19 }}, {{val| 0 -20 -52 -31 -43 -82 }}]
Mapping: {{mapping| 1 1 19 11 -10 -20 | 0 2 -57 -28 46 81 }}


POTE generator: ~21/20 = 84.8750
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117


Vals: {{val list| 198, 410 }}
Optimal ET sequence: {{Optimal ET sequence| 41, 147cef, 188f, 229, 270, 581, 851, 2283b, 3134b }}


Badness: 0.0370
Badness: 0.013830
 
=== Humorous ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 3025/3024, 1600000/1594323
 
Mapping: [{{val| 1 3 6 5 3 }}, {{val| 0 -40 -104 -62 13 }}]
 
POTE generator: ~4096/3993 = 42.4391
 
Vals: {{val list| 85c, 113, 198, 311, 509, 820 }}
 
Badness: 0.0582


==== 13-limit ====
=== 2.3.5.7.11.13.19 subgroup (neonewt) ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13.19


Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024
Comma list: 1216/1215, 1540/1539, 1729/1728, 2080/2079, 2401/2400


Mapping: [{{val| 1 3 6 5 3 6 }}, {{val| 0 -40 -104 -62 13 -65 }}]
Mapping: {{mapping| 1 1 19 11 -10 -20 18 | 0 2 -57 -28 46 81 -47 }}


POTE generator: ~40/39 = 42.4391
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117


Vals: {{val list| 85c, 113, 198, 311, 509, 820f }}
Optimal ET sequence: {{Optimal ET sequence| 41, 147cefh, 188f, 229, 270, 581, 851, 3134b, 3985b, 4836bb }}
 
Badness: 0.0283


== Septidiasemi ==
== Septidiasemi ==
{{Main| Septidiasemi }}
{{Main| Septidiasemi }}
Aside from 2401/2400, [[septidiasemi]] tempers out 2152828125/2147483648 in the 7-limit. It is so named because the generator is a "septimal diatonic semitone" (0.15 cents flat of [[15/14]]). It is an excellent tuning for 2.3.5.7.13 and 2.3.5.7.13.17 subgroups rather than full 13- and 17-limit.
Aside from 2401/2400, [[septidiasemi]] tempers out 2152828125/2147483648 in the 7-limit. It is so named because the generator is a "septimal diatonic semitone" (0.15 cents flat of [[15/14]]). It is an excellent tuning for 2.3.5.7.13 and 2.3.5.7.13.17 subgroups rather than full 13- and 17-limit.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 2152828125/2147483648
[[Comma list]]: 2401/2400, 2152828125/2147483648


[[Mapping]]: [{{val| 1 -1 6 4 }}, {{val| 0 26 -37 -12 }}]
{{Mapping|legend=1| 1 25 -31 -8 | 0 -26 37 12 }}


{{Multival|legend=1|26 -37 -12 -119 -92 76}}
: Mapping generators: ~2, ~28/15


[[POTE generator]]: ~15/14 = 119.297
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 119.297


{{Val list|legend=1| 10, 151, 161, 171, 3581bcdd, 3752bcdd, 3923bcdd, 4094bcdd, 4265bccdd, 4436bccdd, 4607bccdd }}
{{Optimal ET sequence|legend=1| 10, 151, 161, 171, 3581bcdd, 3752bcdd, 3923bcdd, 4094bcdd, 4265bccdd, 4436bccdd, 4607bccdd }}


[[Badness]]: 0.044115
[[Badness]]: 0.044115
Line 752: Line 710:
Comma list: 243/242, 441/440, 939524096/935859375
Comma list: 243/242, 441/440, 939524096/935859375


Mapping: [{{val| 1 -1 6 4 -3 }}, {{val| 0 26 -37 -12 65 }}]
Mapping: {{mapping| 1 25 -31 -8 62 | 0 -26 37 12 -65 }}


POTE generator: ~15/14 = 119.279
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279


Vals: {{Val list| 10, 151, 161, 171, 332 }}
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332 }}


Badness: 0.090687
Badness: 0.090687
Line 765: Line 723:
Comma list: 243/242, 441/440, 2200/2197, 3584/3575
Comma list: 243/242, 441/440, 2200/2197, 3584/3575


Mapping: [{{val| 1 -1 6 4 -3 4 }}, {{val| 0 26 -37 -12 65 -3 }}]
Mapping: {{mapping| 1 25 -31 -8 62 1 | 0 -26 37 12 -65 3 }}


POTE generator: ~15/14 = 119.281
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281


Vals: {{Val list| 10, 151, 161, 171, 332, 835eeff }}
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332, 835eeff }}


Badness: 0.045773
Badness: 0.045773
Line 778: Line 736:
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575


Mapping: [{{val| 1 -1 6 4 -3 4 2 }}, {{val| 0 26 -37 -12 65 -3 21 }}]
Mapping: {{mapping| 1 25 -31 -8 62 1 23 | 0 -26 37 12 -65 3 -21 }}


POTE generator: ~15/14 = 119.281
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281


Vals: {{Val list| 10, 151, 161, 171, 332, 503ef, 835eeff }}
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332, 503ef, 835eeff }}


Badness: 0.027322
Badness: 0.027322


== Maviloid ==
== Maviloid ==
{{see also| Ragismic microtemperaments #Parakleismic }}
{{See also| Ragismic microtemperaments #Parakleismic }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 1224440064/1220703125
[[Comma list]]: 2401/2400, 1224440064/1220703125


[[Mapping]]: [{{val| 1 31 34 26 }}, {{val| 0 -52 -56 -41 }}]
{{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }}


{{Multival|legend=1|52 56 41 -32 -81 -62}}
: Mapping generators: ~2, ~1296/875


[[POTE generator]]: ~1296/875 = 678.810
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1296/875 = 678.810


{{Val list|legend=1| 76, 99, 274, 373, 472, 571, 1043, 1614 }}
{{Optimal ET sequence|legend=1| 76, 99, 274, 373, 472, 571, 1043, 1614 }}


[[Badness]]: 0.057632
[[Badness]]: 0.057632
Line 806: Line 764:
{{See also| Luna family }}
{{See also| Luna family }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 274877906944/274658203125
[[Comma list]]: 2401/2400, 274877906944/274658203125


[[Mapping]]: [{{val| 1 19 0 6 }}, {{val| 0 -60 8 -11 }}]
{{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }}


{{Multival|legend=1|60 -8 11 -152 -151 48}}
: Mapping generators: ~2, ~57344/46875


[[POTE generator]]: ~57344/46875 = 348.301
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301


{{Val list|legend=1| 31, 348, 379, 410, 441, 1354, 1795, 2236 }}
{{Optimal ET sequence|legend=1| 31, …, 348, 379, 410, 441, 1354, 1795, 2236 }}


[[Badness]]: 0.045792
[[Badness]]: 0.045792
Line 823: Line 781:
{{See also| Metric microtemperaments #Geb }}
{{See also| Metric microtemperaments #Geb }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 31381059609/31360000000
[[Comma list]]: 2401/2400, 31381059609/31360000000


[[Mapping]]: [{{val| 1 13 33 21 }}, {{val| 0 -32 -86 -51 }}]
{{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }}


{{Multival|legend=1|32 86 51 62 -9 -123}}
: Mapping generators: ~2, ~2800/2187


[[POTE generator]]: ~2800/2187 = 428.066
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066


{{Val list|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696, 6955dd }}
{{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696 }}


[[Badness]]: 0.028307
[[Badness]]: 0.028307


== Gorgik ==
== Gorgik ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 28672/28125
[[Comma list]]: 2401/2400, 28672/28125


[[Mapping]]: [{{val| 1 5 1 3 }}, {{val| 0 -18 7 -1 }}]
{{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }}


{{Multival|legend=1|18 -7 1 -53 -49 22}}
: Mapping generators: ~2, ~8/7


[[POTE generator]]: ~8/7 = 227.512
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 227.512


{{Val list|legend=1| 21, 37, 58, 153bc, 211bccd, 269bccd }}
{{Optimal ET sequence|legend=1| 21, 37, 58, 153bc, 211bccd, 269bccd }}


[[Badness]]: 0.158384
[[Badness]]: 0.158384
Line 857: Line 815:
Comma list: 176/175, 2401/2400, 2560/2541
Comma list: 176/175, 2401/2400, 2560/2541


Mapping: [{{val| 1 5 1 3 1 }}, {{val| 0 -18 7 -1 13 }}]
Mapping: {{mapping| 1 5 1 3 1 | 0 -18 7 -1 13 }}


POTE generator: ~8/7 = 227.500
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.500


Vals: {{Val list| 21, 37, 58, 153bce, 211bccdee, 269bccdee }}
Optimal ET sequence: {{Optimal ET sequence| 21, 37, 58, 153bce, 211bccdee, 269bccdee }}


Badness: 0.059260
Badness: 0.059260
Line 870: Line 828:
Comma list: 176/175, 196/195, 364/363, 512/507
Comma list: 176/175, 196/195, 364/363, 512/507


Mapping: [{{val| 1 5 1 3 1 2 }}, {{val| 0 -18 7 -1 13 9 }}]
Mapping: {{mapping| 1 5 1 3 1 2 | 0 -18 7 -1 13 9 }}


POTE generator: ~8/7 = 227.493
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.493


Vals: {{Val list| 21, 37, 58, 153bcef, 211bccdeeff }}
Optimal ET sequence: {{Optimal ET sequence| 21, 37, 58, 153bcef, 211bccdeeff }}


Badness: 0.032205
Badness: 0.032205


== Fibo ==
== Fibo ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 341796875/339738624
[[Comma list]]: 2401/2400, 341796875/339738624


[[Mapping]]: [{{val| 1 19 8 10 }}, {{val| 0 -46 -15 -19 }}]
{{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }}


{{Multival|legend=1|46 15 19 -83 -99 2}}
: Mapping generators: ~2, ~125/96


[[POTE generator]]: ~125/96 = 454.310
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310


{{Val list|legend=1| 37, 103, 140, 243, 383, 1009cd, 1392ccd }}
{{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243, 383, 1009cd, 1392ccd }}


Badness: 0.100511
Badness: 0.100511
Line 898: Line 856:
Comma list: 385/384, 1375/1372, 43923/43750
Comma list: 385/384, 1375/1372, 43923/43750


Mapping: [{{val| 1 19 8 10 8 }}, {{val| 0 -46 -15 -19 -12 }}]
Mapping: {{mapping| 1 19 8 10 8 | 0 -46 -15 -19 -12 }}


POTE generator: ~100/77 = 454.318
Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318


Vals: {{Val list| 37, 103, 140, 243e }}
Optimal ET sequence: {{Optimal ET sequence| 37, 66b, 103, 140, 243e }}


Badness: 0.056514
Badness: 0.056514
Line 911: Line 869:
Comma list: 385/384, 625/624, 847/845, 1375/1372
Comma list: 385/384, 625/624, 847/845, 1375/1372


Mapping: [{{val| 1 19 8 10 8 9 }}, {{val| 0 -46 -15 -19 -12 -14 }}]
Mapping: {{mapping| 1 19 8 10 8 9 | 0 -46 -15 -19 -12 -14 }}


POTE generator: ~13/10 = 454.316
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316


Vals: {{Val list| 37, 103, 140, 243e }}
Optimal ET sequence: {{Optimal ET sequence| 37, 66b, 103, 140, 243e }}


Badness: 0.027429
Badness: 0.027429


== Mintone ==
== Mintone ==
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo|-3 11 -5 -1}} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58&amp;103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo| -3 11 -5 -1 }} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 &amp; 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 177147/175000
[[Comma list]]: 2401/2400, 177147/175000


[[Mapping]]: [{{val| 1 5 9 7 }}, {{val| 0 -22 -43 -27 }}]
{{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }}


{{Multival|legend=1|22 43 27 17 -19 -58}}
: Mapping generators: ~2, ~10/9


[[POTE generator]]: ~10/9 = 186.343
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~10/9 = 186.343


{{Val list|legend=1| 45, 58, 103, 161, 586b, 747bc, 908bbc }}
{{Optimal ET sequence|legend=1| 45, 58, 103, 161, 586b, 747bc, 908bbc }}


[[Badness]]: 0.125672
[[Badness]]: 0.125672
Line 941: Line 899:
Comma list: 243/242, 441/440, 43923/43750
Comma list: 243/242, 441/440, 43923/43750


Mapping: [{{val| 1 5 9 7 12 }}, {{val| 0 -22 -43 -27 -55 }}]
Mapping: {{mapping| 1 5 9 7 12 | 0 -22 -43 -27 -55 }}


POTE generator: ~10/9 = 186.345
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.345


Vals: {{Val list| 58, 103, 161, 425b, 586b, 747bc }}
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586b, 747bc }}


Badness: 0.039962
Badness: 0.039962
Line 954: Line 912:
Comma list: 243/242, 351/350, 441/440, 847/845
Comma list: 243/242, 351/350, 441/440, 847/845


Mapping: [{{val| 1 5 9 7 12 11 }}, {{val| 0 -22 -43 -27 -55 -47 }}]
Mapping: {{mapping| 1 5 9 7 12 11 | 0 -22 -43 -27 -55 -47 }}


POTE generator: ~10/9 = 186.347
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.347


Vals: {{Val list| 58, 103, 161, 425b, 586bf }}
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586bf }}


Badness: 0.021849
Badness: 0.021849
Line 967: Line 925:
Comma list: 243/242, 351/350, 441/440, 561/560, 847/845
Comma list: 243/242, 351/350, 441/440, 561/560, 847/845


Mapping: [{{val| 1 5 9 7 12 11 3 }}, {{val| 0 -22 -43 -27 -55 -47 7 }}]
Mapping: {{mapping| 1 5 9 7 12 11 3 | 0 -22 -43 -27 -55 -47 7 }}


POTE generator: ~10/9 = 186.348
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.348


Vals: {{Val list| 58, 103, 161, 425b, 586bf }}
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586bf }}


Badness: 0.020295
Badness: 0.020295


== Catafourth ==
== Catafourth ==
{{see also| Sensipent family }}
{{See also| Sensipent family }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 78732/78125
[[Comma list]]: 2401/2400, 78732/78125


[[Mapping]]: [{{val| 1 13 17 13 }}, {{val| 0 -28 -36 -25 }}]
{{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }}


{{Multival|legend=1| 28 36 25 -8 -39 -43 }}
: Mapping generators: ~2, ~250/189


[[POTE generator]]: ~250/189 = 489.235
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~250/189 = 489.235


{{Val list|legend=1| 27, 76, 103, 130 }}
{{Optimal ET sequence|legend=1| 27, 76, 103, 130 }}


Badness: 0.079579
Badness: 0.079579
Line 997: Line 955:
Comma list: 243/242, 441/440, 78408/78125
Comma list: 243/242, 441/440, 78408/78125


Mapping: [{{val| 1 13 17 13 32 }}, {{val| 0 -28 -36 -25 -70 }}]
Mapping: {{mapping| 1 13 17 13 32 | 0 -28 -36 -25 -70 }}


POTE generator: ~250/189 = 489.252
Optimal tuning (POTE): ~2 = 1\1, ~250/189 = 489.252


Vals: {{Val list| 103, 130, 233, 363, 493e, 856be }}
Optimal ET sequence: {{Optimal ET sequence| 103, 130, 233, 363, 493e, 856be }}


Badness: 0.036785
Badness: 0.036785
Line 1,010: Line 968:
Comma list: 243/242, 351/350, 441/440, 10985/10976
Comma list: 243/242, 351/350, 441/440, 10985/10976


Mapping: [{{val| 1 13 17 13 32 9 }}, {{val| 0 -28 -36 -25 -70 -13 }}]
Mapping: {{mapping| 1 13 17 13 32 9 | 0 -28 -36 -25 -70 -13 }}


POTE generator: ~65/49 = 489.256
Optimal tuning (POTE): ~2 = 1\1, ~65/49 = 489.256


Vals: {{Val list| 103, 130, 233, 363 }}
Optimal ET sequence: {{Optimal ET sequence| 103, 130, 233, 363 }}


Badness: 0.021694
Badness: 0.021694


== Cotritone ==
== Cotritone ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 390625/387072
[[Comma list]]: 2401/2400, 390625/387072


[[Mapping]]: [{{val| 1 -13 -4 -4 }}, {{val| 0 30 13 14 }}]
{{Mapping|legend=1| 1 17 9 10 | 0 -30 -13 -14 }}


{{Multival|legend=1|30 13 14 -49 -62 -4}}
: Mappping generators: ~2, ~10/7


[[POTE generator]]: ~7/5 = 583.385
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 583.385


{{Val list|legend=1| 35, 37, 72, 109, 181, 253 }}
{{Optimal ET sequence|legend=1| 35, 37, 72, 109, 181, 253 }}


[[Badness]]: 0.098322
[[Badness]]: 0.098322
Line 1,038: Line 996:
Comma list: 385/384, 1375/1372, 4000/3993
Comma list: 385/384, 1375/1372, 4000/3993


Mapping: [{{val| 1 -13 -4 -4 2 }}, {{val| 0 30 13 14 3 }}]
Mapping: {{mapping| 1 17 9 10 5 | 0 -30 -13 -14 -3 }}


POTE generator: ~7/5 = 583.387
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387


Vals: {{Val list| 35, 37, 72, 109, 181, 253 }}
Optimal ET sequence: {{Optimal ET sequence| 35, 37, 72, 109, 181, 253 }}


Badness: 0.032225
Badness: 0.032225
Line 1,051: Line 1,009:
Comma list: 169/168, 364/363, 385/384, 625/624
Comma list: 169/168, 364/363, 385/384, 625/624


Mapping: [{{val| 1 -13 -4 -4 2 -7 }}, {{val| 0 30 13 14 3 22 }}]
Mapping: {{mapping| 1 17 9 10 5 15 | 0 -30 -13 -14 -3 -22 }}


POTE generator: ~7/5 = 583.387
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387


Vals: {{Val list| 37, 72, 109, 181f }}
Optimal ET sequence: {{Optimal ET sequence| 37, 72, 109, 181f }}


Badness: 0.028683
Badness: 0.028683


[[Category:Regular temperament theory]]
== Quasimoha ==
[[Category:Temperament collection]]
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Quasimoha]].''
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 3645/3584
 
{{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }}
 
: Mapping generators: ~2, ~49/40
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603
 
{{Optimal ET sequence|legend=1| 31, 117c, 148bc, 179bc }}
 
[[Badness]]: 0.110820
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 1815/1792
 
Mapping: {{mapping| 1 1 9 6 2 | 0 2 -23 -11 5 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.639
 
Optimal ET sequence: {{Optimal ET sequence| 31, 86ce, 117ce, 148bce }}
 
Badness: 0.046181
 
== Lockerbie ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lockerbie]].''
Lockerbie can be described as the {{nowrap| 103 & 270 }} temperament. Its generator is [[120/77]] or [[77/60]]. An obvious tuning is given by 270edo, but [[373edo]] and especially [[643edo]] work as well.
 
The temperament derives its name from the {{w|Lockerbie|Scottish town}}, where a {{w|Pan Am Flight 103|flight numbered 103}} crashed with 270 casualties, and the temperament is defined as 103 & 270, hence the name. The name is proposed by Eliora, who favours it due to simplicity, ease of pronunciation and relation to numbers 103 and 270.
 
Lockerbie also has a unique extension that adds the 41st harmonic such that the generator below 600 cents is also on the same step in 103 or 270 as [[41/32]], which means that [[616/615]] is tempered out.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, {{monzo| 24 13 -18 -1 }}
 
{{Mapping|legend=1| 1 -25 -16 -13 | 0 74 51 44 }}
 
: Mapping generators: ~2, ~3828125/2985984
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~3828125/2985984 = 431.1071
: [[error map]]: {{val| 0.0000 -0.0270 +0.1502 -0.1120 }}
* [[CWE]]: ~2 = 1200.0000, ~3828125/2985984 = 431.1072
: error map: {{val| 0.0000 -0.0205 +0.1547 -0.1081 }}
 
{{Optimal ET sequence|legend=1| 103, 167, 270, 643, 913 }}
 
[[Badness]] (Smith): 0.0597
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 3025/3024, 766656/765625
 
Mapping: {{mapping| 1 -25 -16 -13 -26 | 0 74 51 44 82 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~77/60 = 431.1082
* CWE: ~2 = 1200.0000, ~77/60 = 431.1078
 
{{Optimal ET sequence|legend=0| 103, 167, 270, 643, 913, 1183e }}
 
Badness (Smith): 0.0262
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1001/1000, 1716/1715, 3025/3024, 4225/4224
 
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 | 0 74 51 44 82 27 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~77/60 = 431.1085
* CWE: ~2 = 1200.0000, ~77/60 = 431.1069
 
{{Optimal ET sequence|legend=0| 103, 167, 270, 643, 913f }}
 
Badness (Smith): 0.0160
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 715/714, 936/935, 1001/1000, 1225/1224, 4225/4224
 
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 -11 | 0 74 51 44 82 27 42 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~77/60 = 431.107
* CWE: ~2 = 1200.000, ~77/60 = 431.108
 
{{Optimal ET sequence|legend=0| 103, 167, 270 }}
 
Badness (Smith): 0.0210
 
=== 2.3.5.7.11.13.17.41 subgroup ===
Subgroup: 2.3.5.7.11.13.17.41
 
Comma list: 616/615, 715/714, 936/935, 1001/1000, 1225/1224, 4225/4224
 
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 -11 5 | 0 74 51 44 82 27 42 1 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~41/32 = 431.107
* CWE: ~2 = 1200.000, ~41/32 = 431.111
 
{{Optimal ET sequence|legend=0| 103, 167, 270 }}
 
== Hemigoldis ==
: ''For the 5-limit version, see [[Diaschismic–gothmic equivalence continuum #Goldis]].''
 
Though fairly complex in the [[7-limit]], hemigoldis does a lot better in badness metrics than pure 5-limit goldis, and yet again has many possible extensions to other primes. For example, two periods minus six generators yields a "tetracot second" which can be interpreted as ~[[21/19]] to add prime 19 or perhaps more accurately ~[[31/28]] to add prime 7, or even simply as ~[[32/29]] to add prime 29, though the other two have the benefit of clearly connecting to the 7-limit representation. Note that again [[89edo]] is a possible tuning for combining it with flat nestoria and not appearing in the optimal ET sequence.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 549755813888/533935546875
 
{{Mapping|legend=1| 1 21 -9 2 | 0 -24 14 1 }}
 
: mapping generators: ~2, ~7/4
 
[[Optimal tuning]] ([[CWE]]): ~2 = 1200.000, ~7/4 = 970.690
 
{{Optimal ET sequence|legend=1| 21, 47b, 68, 157, 382bccd, 529bccd }}
 
[[Badness]] (Sintel): 4.40
 
== Surmarvelpyth ==
''Surmarvelpyth'' is named for the generator fifth, 675/448 being 225/224 (marvel comma) sharp of 3/2. It can be described as the 311 & 431 temperament, starting with the 7-limit to the 19-limit.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, {{monzo| 93 -32 -17 -1 }}
 
{{Mapping|legend=1| 1 43 -74 -25 | 0 -70 129 47 }}
 
: Mapping generators: ~2, ~675/448
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~675/448 = 709.9719
 
{{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 2848, 3901 }}
 
[[Badness]]: 0.202249
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 820125/819896, 2097152/2096325
 
Mapping: {{mapping| 1 43 -74 -25 36 | 0 -70 129 47 -55 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~675/448 = 709.9720
 
Optimal ET sequence: {{Optimal ET sequence| 120, 191, 311, 742, 1053, 1795 }}
 
Badness: 0.052308
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 2401/2400, 4096/4095, 6656/6655, 24192/24167
 
Mapping: {{mapping| 1 43 -74 -25 36 25 | 0 -70 129 47 -55 -36 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9723
 
Optimal ET sequence: {{Optimal ET sequence| 120, 191, 311, 742, 1053, 1795f }}
 
Badness: 0.032503
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 2401/2400, 2601/2600, 4096/4095, 6656/6655, 8624/8619
 
Mapping: {{mapping| 1 43 -74 -25 36 25 -103 | 0 -70 129 47 -55 -36 181 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722
 
Optimal ET sequence: {{Optimal ET sequence| 120g, 191g, 311, 431, 742, 1795f }}
 
Badness: 0.020995
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 2401/2400, 2601/2600, 2926/2925, 3136/3135, 3213/3211, 5985/5984
 
Mapping: {{mapping| 1 43 -74 -25 36 25 -103 -49 | 0 -70 129 47 -55 -36 181 90 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722
 
Optimal ET sequence: {{Optimal ET sequence| 120g, 191g, 311, 431, 742, 1795f }}
 
Badness: 0.013771
 
== Notes ==
 
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Breedsmic temperaments| ]] <!-- main article -->
[[Category:Breedsmic temperaments| ]] <!-- main article -->
[[Category:Breed| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]