212edo: Difference between revisions

Fredg999 category edits (talk | contribs)
m Sort key
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 2<sup>2</sup> × 53
{{ED intro}}
| Step size = 5.66038¢
| Fifth = 124\212 (701.89¢) (→ [[53edo|31\53]])
| Semitones = 20:16 (113.21¢ : 90.57¢)
| Consistency = 15
}}
The '''212 equal divisions of the octave''' ('''212edo'''), or the '''212(-tone) equal temperament''' ('''212tet''', '''212et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 212 [[equal]] parts of about 5.66 [[cent]]s each.


== Theory ==
== Theory ==
212edo is distinctly [[consistent]] in the [[15-odd-limit]] with harmonics of 3 through 13 all tuned flat. 212 = 4 × 53, and it shares the 3rd, 5th, and 13th [[harmonic]]s with [[53edo]], but the mapping differs for 7 and 11.  
212edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with [[harmonic]]s of 3 through 13 all tuned flat. It shares the [[3/1|3rd]], [[5/1|5th]], and [[13/1|13th]] [[harmonic]]s with [[53edo]], but the mapping differs for [[7/1|7]] and [[11/1|11]].  


It tempers out the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]] and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]] and [[10648/10647]].  
It [[tempering out|tempers out]] the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]], and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].  


It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit.  
It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit.  


The 212gh val shows some potential beyond 15-odd-limit. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone.
To the 13-limit we may add the [[prime harmonic|prime]] [[23/1|23]] without introducing too much extra error, tempering out [[484/483]] and [[507/506]]. The 212gh val shows some potential if the full [[23-limit]] is desired, where it notably tempers out [[289/288]] and [[361/360]]. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone. This is related to the fact that 212edo splits steps of 53edo, which are mapped to a syntonic comma, in four.


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|212|columns=11}}
{{Harmonics in equal|212}}
 
=== Octave stretch ===
212edo can benefit from slightly [[stretched and compressed tuning|stretching the octave]], using tunings such as [[124edf]] or [[336edt]]. This improves the approximated harmonics 5, 7, 11, 13 and brings the flat mappings of 17 and 19 closer; only the 23 becomes less accurate as it is tuned sharp already.
 
=== Subsets and supersets ===
Since 212 factors into primes as {{nowrap| 2<sup>2</sup> × 53 }}, 212edo has subset edos {{EDOs| 2, 4, 53, and 106 }}. As such, it can be used to tune the 53rd-octave [[cartography]] temperament and the 106th-octave [[boiler]] temperment.
 
A step of 212edo is exactly 50 [[türk sent]]s.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 33: Line 36:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 15625/15552, 32805/32768
| 2401/2400, 15625/15552, 32805/32768
| [{{val| 212 336 492 595 }}]
| {{Mapping| 212 336 492 595 }}
| +0.243
| +0.243
| 0.244
| 0.244
Line 40: Line 43:
| 2.3.5.7.11
| 2.3.5.7.11
| 385/384, 1375/1372, 6250/6237, 14641/14580
| 385/384, 1375/1372, 6250/6237, 14641/14580
| [{{val| 212 336 492 595 733 }}]
| {{Mapping| 212 336 492 595 733 }}
| +0.325
| +0.325
| 0.273
| 0.273
Line 47: Line 50:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 325/324, 385/384, 625/624, 1375/1372, 10648/10647
| 325/324, 385/384, 625/624, 1375/1372, 10648/10647
| [{{val| 212 336 492 595 733 784 }}]
| {{Mapping| 212 336 492 595 733 784 }}
| +0.396
| +0.396
| 0.296
| 0.296
Line 54: Line 57:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647
| 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647
| [{{val| 212 336 492 595 733 784 866 }}] (212g)
| {{Mapping| 212 336 492 595 733 784 866 }} (212g)
| +0.447
| +0.447
| 0.301
| 0.301
Line 61: Line 64:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624
| 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624
| [{{val| 212 336 492 595 733 784 866 900 }}] (212gh)
| {{Mapping| 212 336 492 595 733 784 866 900 }} (212gh)
| +0.485
| +0.485
| 0.299
| 0.299
| 5.27
| 5.27
|-
| 2.3.5.7.11.13.17.19.23
| 289/288, 323/322, 325/324, 361/360, 385/384, 442/441, 484/483, 507/506
| {{Mapping| 212 336 492 595 733 784 866 900 959 }} (212gh)
| +0.430
| 0.321
| 5.67
|}
|}
* 212et (212gh val) has a lower absolute error in the 19-limit than any previous equal temperaments, past [[193edo|193]] and followed by [[217edo|217]].


=== Rank-2 temperaments ===
Note: temperaments supported by 53et are not included.  
Note: temperaments supported by 53et are not included.  


{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 120: Line 133:
|-
|-
| 2
| 2
| 97\212<br>(9\212)
| 97\212<br />(9\212)
| 549.06<br>(50.94)
| 549.06<br />(50.94)
| 11/8<br>(36/35)
| 11/8<br />(36/35)
| [[Kleischismic]]
| [[Kleischismic]]
|-
|-
| 4
| 4
| 56\212<br>(3\212)
| 56\212<br />(3\212)
| 316.98<br>(16.98)
| 316.98<br />(16.98)
| 6/5<br>(126/125)
| 6/5<br />(126/125)
| [[Quadritikleismic]]
| [[Quadritikleismic]]
|-
|-
| 4
| 4
| 88\212<br>(18\212)
| 88\212<br />(18\212)
| 498.11<br>(101.89)
| 498.11<br />(101.89)
| 4/3<br>(35/33)
| 4/3<br />(35/33)
| [[Quadrant]]
| [[Quadrant]]
|-
|-
| 53
| 53
| 41\212<br>(1\198)
| 41\212<br />(1\212)
| 232.08<br>(5.66)
| 232.08<br />(5.66)
| 8/7<br>(225/224)
| 8/7<br />(225/224)
| [[Schismerc]] / [[cartography]]
| [[Schismerc]] / [[cartography]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
== Music ==
; [[Eliora]]
* [https://www.youtube.com/watch?v=bvCeNcxUDnA ''Etude in Amicable, Bisesqui, and 53edo'']


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:53edo]]
[[Category:53edo]]
[[Category:Agni]]
[[Category:Kleismic]]
[[Category:Kleismic]]
[[Category:Agni]]
[[Category:Listen]]
[[Category:Quadritikleismic]]
[[Category:Quadritikleismic]]