20edf: Difference between revisions
-irrelevant shit |
Carlos Gamma as we know today is non-octave, even tho it was originally intended to include the octaves |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
==Intervals== | {{ED intro}} | ||
== Theory == | |||
20edf corresponds to 34.1902edo. It is closely related to [[Carlos Gamma]] and the [[gammic]] temperament, which adds an independent dimension for the [[2/1|octave]] (although strictly speaking, the "canonical" optimized Carlos Gamma tuning is not exactly 20edf, with its fifth stretched by the microscopic amount of 0.016{{c}}). It very accurately represents the intervals [[5/4]], with 11 steps, and [[17/16]], with 3 steps. | |||
=== Harmonics === | |||
{{Harmonics in equal|20|3|2|columns=11}} | |||
{{Harmonics in equal|20|3|2|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 20edf (continued)}} | |||
== Intervals == | |||
The first steps up to two just perfect fifths should give a feeling of the granularity of this system… | The first steps up to two just perfect fifths should give a feeling of the granularity of this system… | ||
{| class="wikitable" | {| class="wikitable mw-collapsible" | ||
|+ Intervals of 20edf | |||
|- | |||
!Degrees | !Degrees | ||
! | !3/2.5/4.17/16 interpretation | ||
!Cents | |||
|- | |- | ||
|1 | |1 | ||
|51/50 | |||
|35.1 | |35.1 | ||
|- | |- | ||
|2 | |||
| |70.2 | |25/24 | ||
|70.2 | |||
|- | |- | ||
|3 | |||
| |105.29 | |17/16 | ||
|105.29 | |||
|- | |- | ||
|4 | |||
| |140.39 | |625/576, 867/800 | ||
|140.39 | |||
|- | |- | ||
|5 | |||
| |175.49 | |320/289, 425/384 | ||
|175.49 | |||
|- | |- | ||
|6 | |||
| |210.59 | |96/85 | ||
|210.59 | |||
|- | |- | ||
|7 | |||
| |245.68 | |144/125 | ||
|245.68 | |||
|- | |- | ||
|8 | |||
| |280.78 | |20/17 | ||
|280.78 | |||
|- | |- | ||
|9 | |||
| |315.88 | |6/5 | ||
|315.88 | |||
|- | |- | ||
|10 | |||
| |350.98 | |153/125, 125/102 | ||
|350.98 | |||
|- | |- | ||
|11 | |||
| |386.075 | |5/4 | ||
|386.075 | |||
|- | |- | ||
|12 | |||
| |421.17 | |51/40 | ||
|421.17 | |||
|- | |- | ||
|13 | |||
| |456.27 | |125/96 | ||
|456.27 | |||
|- | |- | ||
|14 | |||
| |491.37 | |85/64 | ||
|491.37 | |||
|- | |- | ||
|15 | |||
| |526.47 | |576/425, 867/640 | ||
|526.47 | |||
|- | |- | ||
|16 | |||
| |561.56 | |400/289, 864/625 | ||
|561.56 | |||
|- | |- | ||
| |17 | |17 | ||
|24/17 | |||
|596.66 | |||
|- | |- | ||
|18 | |||
| |631.76 | |36/25 | ||
|631.76 | |||
|- | |- | ||
|19 | |||
| |666.86 | |25/17 | ||
|666.86 | |||
|- | |- | ||
| | |'''20''' | ||
| |701.955 | |'''3/2''' | ||
|'''701.955''' | |||
|- | |- | ||
|21 | |21 | ||
|153/100 | |||
|737.05 | |737.05 | ||
|- | |- | ||
|22 | |22 | ||
|25/16 | |||
|772.15 | |772.15 | ||
|- | |- | ||
|23 | |23 | ||
|51/32 | |||
|807.25 | |807.25 | ||
|- | |- | ||
|24 | |24 | ||
|625/384 | |||
|842.35 | |842.35 | ||
|- | |- | ||
|25 | |25 | ||
|425/256, 480/289 | |||
|877.44 | |877.44 | ||
|- | |- | ||
|26 | |26 | ||
|144/85 | |||
|912.54 | |912.54 | ||
|- | |- | ||
|27 | |27 | ||
|216/125 | |||
|947.64 | |947.64 | ||
|- | |- | ||
|28 | |28 | ||
|30/17 | |||
|982.74 | |982.74 | ||
|- | |- | ||
|29 | |29 | ||
|9/5 | |||
|1017.835 | |1017.835 | ||
|- | |- | ||
|30 | |30 | ||
|125/68 | |||
|1052.93 | |1052.93 | ||
|- | |- | ||
|31 | |31 | ||
|15/8 | |||
|1088.03 | |1088.03 | ||
|- | |- | ||
|32 | |32 | ||
|153/80 | |||
|1123.13 | |1123.13 | ||
|- | |- | ||
|33 | |33 | ||
|125/64 | |||
|1158.23 | |1158.23 | ||
|- | |- | ||
|34 | |34 | ||
|255/128 | |||
|1193.32 | |1193.32 | ||
|- | |- | ||
|35 | |35 | ||
|864/425 | |||
|1228.42 | |1228.42 | ||
|- | |- | ||
|36 | |36 | ||
|600/289 | |||
|1263.52 | |1263.52 | ||
|- | |- | ||
|37 | |37 | ||
|36/17 | |||
|1298.62 | |1298.62 | ||
|- | |- | ||
|38 | |38 | ||
|54/25 | |||
|1333.715 | |1333.715 | ||
|- | |- | ||
|39 | |39 | ||
|75/34 | |||
|1368.81 | |1368.81 | ||
|- | |- | ||
|40 | |'''40''' | ||
|1403.91 | |'''9/4''' | ||
|'''1403.91''' | |||
|} | |} | ||
{{stub}} |