Module:Infobox ET: Difference between revisions

Plumtree (talk | contribs)
m Link to ET family added
Fredg999 (talk | contribs)
Make zeta properties display opt-in, but always include zeta categories nonetheless
 
(136 intermediate revisions by 8 users not shown)
Line 1: Line 1:
local p = {}
local p = {}
local i = require('Module:Interval')
 
local u = require('Module:Utils')
local ET = require("Module:ET")
local rat = require('Module:Rational')
local infobox = require("Module:Infobox")
local l = require('Module:Limits')
local limits = require("Module:Limits")
local ET = require('Module:ET')
local rat = require("Module:Rational")
local utils = require("Module:Utils")
 
-- check whether the input is a non-empty string
local function value_provided(s)
return type(s) == "string" and #s > 0
end


-- towards is one of: -1 (floor), 0 (nearest), 1 (ceil)
-- towards is one of: -1 (floor), 0 (nearest), 1 (ceil)
local function approximation(et, interval, towards, precomputed_approx)
local function approximation(et, interval, towards, precomputed_approx)
local approx = ET.approximate(et, interval, towards or 0)
local approx = precomputed_approx or ET.approximate(et, interval, towards or 0)
if precomputed_approx then
 
approx = precomputed_approx
-- string for backslash notation
end
-- "edo" is omitted
local tuning = et.size
local tuning = et.size
if not rat.eq(et.equave, 2) then
if not rat.eq(et.equave, 2) then
tuning = tuning .. et.suffix
tuning = tuning .. et.suffix
end
end
local ratio = rat.new(approx, et.size)
local ratio = rat.new(approx, et.size)
-- convergence notice, suppressed for 1ed's
local convergement_notice = ""
local converges = rat.converges(ratio, math.log(interval) / math.log(rat.as_float(et.equave)))
if et.size > 1 and converges then
convergement_notice = "<br>(" .. converges .. ")"
end
if rat.as_table(ratio)[1] ~= approx then
if rat.as_table(ratio)[1] ~= approx then
convergement_notice = ""
local link = rat.as_table(ratio)[2] .. et.suffix
local link = rat.as_table(ratio)[2] .. et.suffix
ratio = ' ([[' .. link .. '|' .. rat.as_ratio(ratio, '\\')
ratio = string.format(" (&rarr;&nbsp;[[%s|%s%s]])",
if not rat.eq(et.equave, 2) then
link,
ratio = ratio .. et.suffix
rat.as_ratio(ratio, "\\"),
end
(rat.eq(et.equave, 2) == false and et.suffix or ""))
ratio = ratio .. ']])'
else
else
ratio = ''
ratio = ""
end
end
local cents = u._round(ET.cents(et, approx), 6)
 
return approx .. '\\' .. tuning .. ' (' .. cents .. )' .. ratio
local cents = utils._round(ET.cents(et, approx), 6)
 
return approx .. "\\" .. tuning .. " (" .. cents .. "{{c}})" .. ratio .. convergement_notice
end
end


function p.infobox_ET(frame)
function p.infobox_ET(frame)
local tuning = frame.args['tuning']
-- debug mode will disable the categories
local et = ET.parse(tuning) or ET.parse('12edo')
local debug_mode = frame.args["debug"]
local prime = ""
local categories = ""
if u.is_prime(et.size) then
 
prime = " (prime)"
local tuning = frame.args["tuning"]
local et = ET.parse(tuning) or ET.parse(tuning .. "edo") or ET.parse("12edo")
 
-- category of the main article
categories = categories .. "{{#ifexist: Category:" .. tuning .. "|[[Category:" .. tuning .. "| ]]|}}"
-- category of the equal division
if rat.eq(et.equave, 2) then
categories = categories
.. "[[Category:Equal divisions of the octave|"
.. string.rep("#", string.len(et.size))
.. "]]"
elseif rat.eq(et.equave, 3) then
categories = categories .. "[[Category:Edts|" .. string.rep("#", string.len(et.size)) .. "]]"
elseif rat.eq(et.equave, rat.new (3, 2)) then
categories = categories .. "[[Category:Edfs|" .. string.rep("#", string.len(et.size)) .. "]]"
else
categories = categories .. "[[Category:" .. et.suffix .. "'s|" .. string.rep("#", string.len(et.size)) .. "]]"
end
 
-- prime factorization
local prime_factorization_override = frame.args["Prime factorization"]
local prime_factorization
if not value_provided(prime_factorization_override) then
prime_factorization = utils._prime_factorization(et.size)
if utils.is_prime(et.size) then
prime_factorization = prime_factorization .. " (prime)"
if rat.eq(et.equave, 2) then
categories = categories .. "[[Category:Prime EDOs|" .. string.rep("#", string.len(et.size)) .. "]]"
end
end
else
prime_factorization = prime_factorization_override
end
 
-- zeta test
local zeta_override = frame.args["Zeta"]
local zeta_switch
if value_provided(zeta_override) then
zeta_switch = zeta_override:match("^[Yy][Ee][Ss]$") and ET.is_zeta(et)
else
zeta_switch = false
end
 
-- navigation arrows
local increment = 1
if rat.eq(et.equave, rat.new(9, 4)) or rat.eq(et.equave, 4) or rat.eq(et.equave, 9) then
increment = 2
end
end
local prev_one = ""
local prev_one = ''
if et.size >= increment then
if et.size > 0 then
prev_one = "[[" .. (et.size - increment) .. et.suffix .. "|&larr;&nbsp;" .. (et.size - increment) .. et.suffix .. "]]"
prev_one = '[[' .. (et.size - 1) .. et.suffix .. '|← ' .. (et.size - 1) .. et.suffix .. ']]'
end
end
local next_one = '[[' .. (et.size + 1) .. et.suffix .. '|' .. (et.size + 1) .. et.suffix .. ' →]]'
local next_one = "[[" .. (et.size + increment) .. et.suffix .. "|" .. (et.size + increment) .. et.suffix .. "&nbsp;&rarr;]]"
 
-- step size in cents
local step_size = ET.cents(et, 1)
local step_size = ET.cents(et, 1)
local fifth = ET.approximate(et, 3/2)
if step_size > 100 then
local fifth_error = ET.cents(et, fifth) - i._to_cents(3/2)
categories = categories .. "[[Category:Macrotonal|" .. string.rep("#", string.len(et.size)) .. "]]"
local dual_fifth = math.abs(fifth_error) > step_size / 3
end
 
local note_12edo = ""
local note_12edo = ''
if rat.eq(et.equave, 2) and et.size == 12 then
if rat.eq(et.equave, 2) and et.size == 12 then
note_12edo = '<sup>by definition</sup>'
note_12edo = " (by&nbsp;definition)"
end
end
 
-- octave, twelfth, and fifth in steps
local octave = ET.approximate(et, 2)
local octave = ET.approximate(et, 2)
local A1 = 7 * fifth - 4 * octave
local twelfth = ET.approximate(et, 3)
local m2 = 3 * octave - 5 * fifth
local A1_cents = u._round(ET.cents(et, A1), 4)
local m2_cents = u._round(ET.cents(et, m2), 4)


local fifth = -octave + twelfth -- 3/2 = [-1 1>
local fifth_error = ET.cents(et, fifth) - rat.cents(rat.new(3, 2))
local is_dual_fifth = math.abs(fifth_error) > step_size / 3
local A1 = -11 * octave + 7 * twelfth -- 2187/2048 = [-11 7>
local m2 = 8 * octave - 5 * twelfth -- 256/243 = [8 -5>
local A1_cents = utils._round(ET.cents(et, A1), 4)
local m2_cents = utils._round(ET.cents(et, m2), 4)
-- display
local infobox_data = {}
local infobox_data = {}
table.insert(infobox_data, {
table.insert(infobox_data, {
'Prime factorization',
"Prime factorization",
u._prime_factorization(et.size) .. prime
prime_factorization,
})
})
table.insert(infobox_data, {
table.insert(infobox_data, {
'Step size',
"Step size",
u._round(step_size, 6) .. '¢' .. note_12edo
utils._round(step_size, 6) .. "{{c}}" .. note_12edo .. "&nbsp;",
})
})
if not rat.eq(et.equave, rat.new(3, 2)) then
 
table.insert(infobox_data, {
'Fifth',
approximation(et, 3/2)
})
end
if not rat.eq(et.equave, 2) then
if not rat.eq(et.equave, 2) then
table.insert(infobox_data, {
table.insert(infobox_data, {
'Octave',
"Octave",
approximation(et, 2)
approximation(et, 2),
})
})
end
if not rat.eq(et.equave, 3) then
table.insert(infobox_data, {
table.insert(infobox_data, {
'Semitones (A1:m2)',
"Twelfth",
A1 .. ':' .. m2 .. ' (' .. A1_cents .. '¢ : ' .. m2_cents .. '¢)'
approximation(et, 3),
})
})
if dual_fifth and et.size > 0 then
end
else
table.insert(infobox_data, {
table.insert(infobox_data, {
'Sharp fifth',
"Fifth",
approximation(et, 3/2, 1)
approximation(et, 3 / 2),
})
})
table.insert(infobox_data, {
table.insert(infobox_data, {
'Flat fifth',
"Semitones (A1:m2)",
approximation(et, 3/2, -1)
A1 .. ":" .. m2 .. " (" .. A1_cents .. "{{c}} : " .. m2_cents .. "{{c}})",
})
local sharp = ET.approximate(et, 3/2, 1)
local flat = ET.approximate(et, 3/2, -1)
table.insert(infobox_data, {
'Major 2nd',
approximation(et, 9/8, 0, sharp + flat - octave)
})
})
if is_dual_fifth and et.size > 0 then
table.insert(infobox_data, {
"Dual sharp fifth",
approximation(et, 3 / 2, 1),
})
table.insert(infobox_data, {
"Dual flat fifth",
approximation(et, 3 / 2, -1),
})
local sharp = ET.approximate(et, 3 / 2, 1)
local flat = ET.approximate(et, 3 / 2, -1)
table.insert(infobox_data, {
"Dual major 2nd",
approximation(et, 9 / 8, 0, sharp + flat - octave),
})
categories = categories
.. "[[Category:Dual-fifth temperaments|"
.. string.rep("#", string.len(et.size))
.. "]]"
end
end
end
 
local consistency = tonumber(frame.args['Consistency'])
-- consistency and distinct consistency
-- max_limit is used to prevent timeout
local consistency = tonumber(frame.args["Consistency"])
local max_limit = rat.eq(et.equave, 2) and 43 or 32
if consistency == nil then
if consistency == nil then
consistency = l.consistency_limit(et, false, 43)
consistency = limits.consistency_limit(et, false, max_limit)
end
end
if consistency == nil then
if consistency == nil then
consistency = 'at least 43'
consistency = "at least " .. max_limit
end
end
if consistency ~= nil then
if consistency ~= nil then
table.insert(infobox_data, {
table.insert(infobox_data, {
'Consistency limit',
"Consistency limit",
consistency
consistency,
})
})
end
end
local distinct_consistency = tonumber(frame.args['Distinct consistency'])
local distinct_consistency = tonumber(frame.args["Distinct consistency"])
if distinct_consistency == nil then
if distinct_consistency == nil then
distinct_consistency = l.consistency_limit(et, true, 43)
distinct_consistency = limits.consistency_limit(et, consistency or true, max_limit)
end
end
if distinct_consistency == nil then
if distinct_consistency == nil then
distinct_consistency = 'at least 43'
distinct_consistency = "at least " .. max_limit
end
end
if distinct_consistency ~= nil then
if distinct_consistency ~= nil then
table.insert(infobox_data, {
table.insert(infobox_data, {
'Distinct consistency limit',
"Distinct consistency limit",
distinct_consistency
distinct_consistency,
})
})
end
end


local header = '<table style="width: 100%; margin: 0"><tr>'
-- special properties
.. '<td style="width: 15%; text-align: left; white-space: nowrap; font-size: smaller">'
if ET.is_highly_composite(et) or ET.is_zeta(et) then
.. prev_one
local text = ""
.. '</td>'
if ET.is_highly_composite(et) then
.. '<td style="width: 70%; padding-left: 1em; padding-right: 1em; text-align: center">'
text = text .. "[[Highly composite equal division|Highly composite]]"
.. '[[' .. et.suffix .. '|' .. tuning .. ']]'
if rat.eq(et.equave, 2) then
.. '</td>'
categories = categories
.. '<td style="width: 15%; text-align: right; white-space: nowrap; font-size: smaller">'
.. "[[Category:Highly composite EDOs|"
.. next_one
.. string.rep("#", string.len(et.size))
.. '</td>'
.. "]]"
.. '</tr></table>'
end
local s = '<div style="\n' ..
end
'border: 1px solid #999;\n' ..
if ET.is_zeta(et) and rat.eq(et.equave, 2) then
'margin: 0;\n' ..
categories = categories
'margin-left: 1em;\n' ..
.. "[[Category:Zeta record EDOs|"  
'margin-bottom: 0.5em;\n' ..
.. string.rep("#", string.len(et.size))
'padding: 0.5em;\n' ..
.. "]]"
'background-color: #f0f0f0;\n' ..
if zeta_switch then
'min-width: 15em;\n' ..
if #text > 0 then
'float: right;\n' ..
text = text .. "<br>"
'">\n' ..
end
'{| width="100%" style="border-collapse: collapse;"\n' ..
text = text .. ET.why_zeta(et)
'|+ style="font-weight: bold" | ' .. header .. '\n'
end
for i, entry in ipairs(infobox_data) do
end
local caption = entry[1]
if #text >0 then
local text = entry[2]
table.insert(infobox_data, {
s = s .. '|-\n' ..
"Special properties",
'| style="text-align:right; padding-right: 0.25em" | ' .. caption .. '\n' ..
"<div style=\"max-width: 300px;\">" .. text .. "</div>",
'| style="background-color: white; padding-left: 0.25em; font-weight: bold" | ' .. text .. '\n'
})
end
end
 
local result = infobox.build("[[" .. et.suffix .. "|" .. tuning .. "]]", infobox_data, prev_one, next_one)
if not value_provided(debug_mode) then
result = result .. categories
end
end
s = s .. '|}</div>'
return s
return frame:preprocess(result)
end
end


return p
return p