Porcupine family: Difference between revisions
mNo edit summary |
→Porcupine: base the sharpness on 4/3 rather than 3/2 (see talk). Hystrix isn't actually flat of 8d |
||
(14 intermediate revisions by 4 users not shown) | |||
Line 5: | Line 5: | ||
| ja = | | ja = | ||
}} | }} | ||
{{Technical data page}} | |||
The '''porcupine family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[porcupine comma]], [[250/243]], also called the maximal diesis. | The '''porcupine family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[porcupine comma]], [[250/243]], also called the maximal diesis. | ||
Line 10: | Line 11: | ||
{{Main| Porcupine }} | {{Main| Porcupine }} | ||
The [[generator]] of porcupine is a minor whole tone, the [[10/9]] interval, and three of these add up to a perfect fourth ([[4/3]]), with two more giving the minor sixth ([[8/5]]). In fact, (10/9)<sup>3</sup> = (4/3)⋅(250/243), and (10/9)<sup>5</sup> = (8/5)⋅(250/243)<sup>2</sup>. [[22edo|3\22]] is a very recommendable generator, and [[mos scale]]s of 7, 8 and 15 notes make for some nice scale possibilities. | The [[generator]] of porcupine is a minor whole tone, the [[10/9]] interval, and three of these add up to a perfect fourth ([[4/3]]), with two more giving the minor sixth ([[8/5]]). In fact, {{nowrap| (10/9)<sup>3</sup> {{=}} (4/3)⋅(250/243) }}, and {{nowrap| (10/9)<sup>5</sup> {{=}} (8/5)⋅(250/243)<sup>2</sup> }}. Its [[ploidacot]] is omega-tricot. [[22edo|3\22]] is a very recommendable generator, and [[mos scale]]s of 7, 8 and 15 notes make for some nice scale possibilities. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 36: | Line 37: | ||
=== Overview to extensions === | === Overview to extensions === | ||
==== 7-limit extensions ==== | ==== 7-limit extensions ==== | ||
The second comma | The second comma defines which [[7-limit]] family member we are looking at. | ||
* [[ | * [[#Hystrix|Hystrix]] adds [[36/35]], the mint comma, for an exotemperament tuning around 8d-edo; | ||
* [[#Opossum|Opossum]] adds [[28/27]], the trienstonic comma, for a tuning between 8d-edo and 15edo; | |||
* [[#Septimal porcupine|Septimal porcupine]] adds [[64/63]], the archytas comma, for a tuning between 15edo and 22edo; | |||
* [[#Porky|Porky]] adds [[225/224]], the marvel comma, for a tuning between 22edo and 29edo; | |||
* [[#Coendou|Coendou]] adds [[525/512]], the avicennma, for a tuning sharp of 29edo. | |||
Temperaments discussed elsewhere include [[7th-octave temperaments #Jamesbond| | Those all share the same generator with porcupine. | ||
[[#Nautilus|nautilus]] tempers out [[49/48]] and splits the generator in two. [[#Hedgehog|hedgehog]] tempers out [[50/49]] with a semi-octave period. Finally, [[#Ammonite|ammonite]] tempers out [[686/675]] and [[#Ceratitid|ceratitid]] tempers out [[1728/1715]]. Those split the generator in three. | |||
Temperaments discussed elsewhere include: | |||
* [[Oxygen]] → [[Very low accuracy temperaments #Oxygen|Very low accuracy temperaments]]. | |||
* [[Jamesbond]] → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]]. | |||
==== Subgroup extensions ==== | ==== Subgroup extensions ==== | ||
Line 56: | Line 64: | ||
Gencom mapping: {{mapping| 1 2 3 0 4 | 0 -3 -5 0 -4 }} | Gencom mapping: {{mapping| 1 2 3 0 4 | 0 -3 -5 0 -4 }} | ||
: gencom: [2 10/9; 55/54, 100/99] | : gencom: [2 10/9; 55/54, 100/99] | ||
Optimal tunings: | Optimal tunings: | ||
Line 86: | Line 94: | ||
{{Main| Porcupine }} | {{Main| Porcupine }} | ||
Septimal porcupine uses six of its minor tone generator steps to get to [[7/4]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator. | Septimal porcupine uses six of its minor tone generator steps to get to [[7/4]]. Here, we share the same mapping of 7/4 in terms of fifths as [[archy]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 93: | Line 101: | ||
{{Mapping|legend=1| 1 2 3 2 | 0 -3 -5 6 }} | {{Mapping|legend=1| 1 2 3 2 | 0 -3 -5 6 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 104: | Line 110: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }} | * [[7-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }} | ||
: [[eigenmonzo basis| | : [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5 | ||
* [[9-odd-limit]]: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }} | * [[9-odd-limit]]: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }} | ||
: [[eigenmonzo basis| | : [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7 | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
Line 130: | Line 136: | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }} | * 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.9/7 | ||
Tuning ranges: | Tuning ranges: | ||
Line 140: | Line 146: | ||
Badness (Smith): 0.021562 | Badness (Smith): 0.021562 | ||
==== | ==== Porcupinefowl ==== | ||
This extension used to be ''tridecimal porcupine''. | |||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Line 153: | Line 161: | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit: ~10/9 = {{monzo| 1 0 0 0 -1/4 }} | * 13- and 15-odd-limit: ~10/9 = {{monzo| 1 0 0 0 -1/4 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.11 | ||
Tuning ranges: | Tuning ranges: | ||
Line 179: | Line 187: | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit: ~10/9 = {{monzo| 2/13 0 0 0 1/13 -1/13 }} | * 13- and 15-odd-limit: ~10/9 = {{monzo| 2/13 0 0 0 1/13 -1/13 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.13/11 | ||
Tuning ranges: | Tuning ranges: | ||
Line 203: | Line 211: | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/14 0 0 -1/14 0 1/14 }} | * 13- and 15-odd-limit: ~11/10 = {{monzo| 1/14 0 0 -1/14 0 1/14 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.13/7 | ||
{{Optimal ET sequence|legend=0| 15f, 22f, 37, 59f }} | {{Optimal ET sequence|legend=0| 15f, 22f, 37, 59f }} | ||
Line 222: | Line 230: | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }} | * 13- and 15-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.9/7 | ||
{{Optimal ET sequence|legend=0| 7, 15f, 22 }} | {{Optimal ET sequence|legend=0| 7, 15f, 22 }} | ||
Line 229: | Line 237: | ||
== Opossum == | == Opossum == | ||
Opossum can be described as | Opossum can be described as {{nowrap| 8d & 15 }}. Tempering out [[28/27]], the perfect fifth of three generator steps is conflated with not [[32/21]] as in porcupine but [[14/9]]. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 236: | Line 244: | ||
{{Mapping|legend=1| 1 2 3 4 | 0 -3 -5 -9 }} | {{Mapping|legend=1| 1 2 3 4 | 0 -3 -5 -9 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 246: | Line 252: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis| | * [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7 | ||
{{Optimal ET sequence|legend=1| 7d, 8d, 15 }} | {{Optimal ET sequence|legend=1| 7d, 8d, 15 }} | ||
Line 258: | Line 264: | ||
Mapping: {{mapping| 1 2 3 4 4 | 0 -3 -5 -9 -4 }} | Mapping: {{mapping| 1 2 3 4 4 | 0 -3 -5 -9 -4 }} | ||
Optimal tunings: | Optimal tunings: | ||
Line 266: | Line 270: | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit | * 11-odd-limit unchanged-interval (eigenmonzo) basis: 2.7 | ||
{{Optimal ET sequence|legend=0| 7d, 8d, 15 }} | {{Optimal ET sequence|legend=0| 7d, 8d, 15 }} | ||
Line 284: | Line 288: | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit | * 13- and 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.7 | ||
{{Optimal ET sequence|legend=0| 7d, 8d, 15, 38bceff }} | {{Optimal ET sequence|legend=0| 7d, 8d, 15, 38bceff }} | ||
Line 291: | Line 295: | ||
== Porky == | == Porky == | ||
Porky can be described as | Porky can be described as {{nowrap| 22 & 29 }}, suggesting a less sharp perfect fifth. 7\51 is a good generator. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 298: | Line 302: | ||
{{Mapping|legend=1| 1 2 3 5 | 0 -3 -5 -16 }} | {{Mapping|legend=1| 1 2 3 5 | 0 -3 -5 -16 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 309: | Line 311: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }} | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }} | ||
: [[eigenmonzo basis| | : [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5 | ||
{{Optimal ET sequence|legend=1| 7d, 15d, 22, 29, 51, 73c }} | {{Optimal ET sequence|legend=1| 7d, 15d, 22, 29, 51, 73c }} | ||
Line 321: | Line 323: | ||
Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }} | Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }} | ||
Optimal tunings: | Optimal tunings: | ||
Line 330: | Line 330: | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }} | * 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.7/5 | ||
{{Optimal ET sequence|legend=0| 7d, 15d, 22, 51 }} | {{Optimal ET sequence|legend=0| 7d, 15d, 22, 51 }} | ||
Line 355: | Line 355: | ||
== Coendou == | == Coendou == | ||
Coendou can be described as | Coendou can be described as {{nowrap| 29 & 36c }}, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 362: | Line 362: | ||
{{Mapping|legend=1| 1 2 3 1 | 0 -3 -5 13 }} | {{Mapping|legend=1| 1 2 3 1 | 0 -3 -5 13 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 373: | Line 371: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }} | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }} | ||
: [[eigenmonzo basis| | : [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3 | ||
{{Optimal ET sequence|legend=1| 7, 22d, 29, 65c, 94cd }} | {{Optimal ET sequence|legend=1| 7, 22d, 29, 65c, 94cd }} | ||
Line 392: | Line 390: | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }} | * 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.3 | ||
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65ce }} | {{Optimal ET sequence|legend=0| 7, 22d, 29, 65ce }} | ||
Line 411: | Line 409: | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }} | * 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }} | ||
: | : unchanged-interval (eigenmonzo) basis: 2.3 | ||
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65cef }} | {{Optimal ET sequence|legend=0| 7, 22d, 29, 65cef }} | ||
Line 425: | Line 423: | ||
{{Mapping|legend=1| 1 2 3 3 | 0 -3 -5 -1 }} | {{Mapping|legend=1| 1 2 3 3 | 0 -3 -5 -1 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 436: | Line 432: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }} | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }} | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5 | ||
{{Optimal ET sequence|legend=1| 7, 8d, 15d }} | {{Optimal ET sequence|legend=1| 7, 8d, 15d }} | ||
Line 456: | Line 452: | ||
Badness (Smith): 0.026790 | Badness (Smith): 0.026790 | ||
== Hedgehog == | == Hedgehog == | ||
{{See also| Sensamagic clan | Stearnsmic clan }} | {{See also| Sensamagic clan | Stearnsmic clan }} | ||
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). 22edo provides | Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). Its ploidacot is diploid omega-tricot. | ||
22edo provides an obvious tuning, which happens to be the only [[patent val|patent-val]] tuning, but if you are looking for an alternative you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is [[echidna]], which offers much more accuracy. They merge on 22edo. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 490: | Line 467: | ||
: mapping generators: ~7/5, ~9/7 | : mapping generators: ~7/5, ~9/7 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 509: | Line 484: | ||
Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }} | Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }} | ||
Optimal tunings: | Optimal tunings: | ||
Line 556: | Line 529: | ||
Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }} | Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }} | ||
Optimal tunings: | Optimal tunings: | ||
Line 571: | Line 542: | ||
== Nautilus == | == Nautilus == | ||
Nautilus tempers out 49/48 and may be described as the {{nowrap| 14c & 15 }} temperament. Its ploidacot is omega-hexacot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 578: | Line 551: | ||
: mapping generators: ~2, ~21/20 | : mapping generators: ~2, ~21/20 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 597: | Line 568: | ||
Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }} | Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }} | ||
Optimal tunings: | Optimal tunings: | ||
Line 642: | Line 611: | ||
== Ammonite == | == Ammonite == | ||
Ammonite adds 686/675 to the comma list and may be described as the {{nowrap| 8d & 29 }} temperament. Its ploidacot is epsilon-enneacot. [[37edo]] provides an obvious tuning. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 649: | Line 620: | ||
: mapping generators: ~2, ~9/7 | : mapping generators: ~2, ~9/7 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 668: | Line 637: | ||
Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }} | Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }} | ||
Optimal tunings: | Optimal tunings: | ||
Line 695: | Line 662: | ||
== Ceratitid == | == Ceratitid == | ||
Ceratitid adds 1728/1715 to the comma list and may be described as the {{nowrap| 21c & 22 }} temperament. Its ploidacot is omega-enneacot. [[22edo]] provides an obvious tuning. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 702: | Line 671: | ||
: mapping generators: ~2, ~36/35 | : mapping generators: ~2, ~36/35 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 746: | Line 713: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Porcupine family| ]] <!-- main article --> | [[Category:Porcupine family| ]] <!-- main article --> | ||
[[Category:Porcupine| ]] <!-- key article --> | [[Category:Porcupine| ]] <!-- key article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |