Porcupine family: Difference between revisions

mNo edit summary
Porcupine: base the sharpness on 4/3 rather than 3/2 (see talk). Hystrix isn't actually flat of 8d
 
(14 intermediate revisions by 4 users not shown)
Line 5: Line 5:
| ja =  
| ja =  
}}
}}
{{Technical data page}}
The '''porcupine family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[porcupine comma]], [[250/243]], also called the maximal diesis.  
The '''porcupine family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[porcupine comma]], [[250/243]], also called the maximal diesis.  


Line 10: Line 11:
{{Main| Porcupine }}
{{Main| Porcupine }}


The [[generator]] of porcupine is a minor whole tone, the [[10/9]] interval, and three of these add up to a perfect fourth ([[4/3]]), with two more giving the minor sixth ([[8/5]]). In fact, (10/9)<sup>3</sup> = (4/3)⋅(250/243), and (10/9)<sup>5</sup> = (8/5)⋅(250/243)<sup>2</sup>. [[22edo|3\22]] is a very recommendable generator, and [[mos scale]]s of 7, 8 and 15 notes make for some nice scale possibilities.
The [[generator]] of porcupine is a minor whole tone, the [[10/9]] interval, and three of these add up to a perfect fourth ([[4/3]]), with two more giving the minor sixth ([[8/5]]). In fact, {{nowrap| (10/9)<sup>3</sup> {{=}} (4/3)⋅(250/243) }}, and {{nowrap| (10/9)<sup>5</sup> {{=}} (8/5)⋅(250/243)<sup>2</sup> }}. Its [[ploidacot]] is omega-tricot. [[22edo|3\22]] is a very recommendable generator, and [[mos scale]]s of 7, 8 and 15 notes make for some nice scale possibilities.


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 36: Line 37:
=== Overview to extensions ===
=== Overview to extensions ===
==== 7-limit extensions ====
==== 7-limit extensions ====
The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which [[7-limit]] family member we are looking at. That means
The second comma defines which [[7-limit]] family member we are looking at.  
* [[64/63]], the archytas comma, for [[#Septimal porcupine|septimal porcupine]],
* [[#Hystrix|Hystrix]] adds [[36/35]], the mint comma, for an exotemperament tuning around 8d-edo;
* [[36/35]], the septimal quarter tone, for [[#Hystrix|hystrix]],
* [[#Opossum|Opossum]] adds [[28/27]], the trienstonic comma, for a tuning between 8d-edo and 15edo;
* [[50/49]], the jubilisma, for [[#Hedgehog|hedgehog]], and
* [[#Septimal porcupine|Septimal porcupine]] adds [[64/63]], the archytas comma, for a tuning between 15edo and 22edo;
* [[49/48]], the slendro diesis, for [[#Nautilus|nautilus]].
* [[#Porky|Porky]] adds [[225/224]], the marvel comma, for a tuning between 22edo and 29edo;
* [[#Coendou|Coendou]] adds [[525/512]], the avicennma, for a tuning sharp of 29edo.  


Temperaments discussed elsewhere include [[7th-octave temperaments #Jamesbond|jamesbond]].
Those all share the same generator with porcupine.
 
[[#Nautilus|nautilus]] tempers out [[49/48]] and splits the generator in two. [[#Hedgehog|hedgehog]] tempers out [[50/49]] with a semi-octave period. Finally, [[#Ammonite|ammonite]] tempers out [[686/675]] and [[#Ceratitid|ceratitid]] tempers out [[1728/1715]]. Those split the generator in three.
 
Temperaments discussed elsewhere include:
* [[Oxygen]] → [[Very low accuracy temperaments #Oxygen|Very low accuracy temperaments]].
* [[Jamesbond]] → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]].


==== Subgroup extensions ====
==== Subgroup extensions ====
Line 56: Line 64:
Gencom mapping: {{mapping| 1 2 3 0 4 | 0 -3 -5 0 -4 }}
Gencom mapping: {{mapping| 1 2 3 0 4 | 0 -3 -5 0 -4 }}


: gencom: [2 10/9; 55/54, 100/99]  
: gencom: [2 10/9; 55/54, 100/99]


Optimal tunings:  
Optimal tunings:  
Line 86: Line 94:
{{Main| Porcupine }}
{{Main| Porcupine }}


Septimal porcupine uses six of its minor tone generator steps to get to [[7/4]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Septimal porcupine uses six of its minor tone generator steps to get to [[7/4]]. Here, we share the same mapping of 7/4 in terms of fifths as [[archy]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 93: Line 101:


{{Mapping|legend=1| 1 2 3 2 | 0 -3 -5 6 }}
{{Mapping|legend=1| 1 2 3 2 | 0 -3 -5 6 }}
{{Multival|legend=1| 3 5 -6 1 -18 -28 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 104: Line 110:
[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
* [[7-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }}
* [[9-odd-limit]]: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/7
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 130: Line 136:
Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
: eigenmonzo (unchanged-interval) basis: 2.9/7
: unchanged-interval (eigenmonzo) basis: 2.9/7


Tuning ranges:  
Tuning ranges:  
Line 140: Line 146:
Badness (Smith): 0.021562
Badness (Smith): 0.021562


==== 13-limit ====
==== Porcupinefowl ====
This extension used to be ''tridecimal porcupine''.
 
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 153: Line 161:
Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~10/9 = {{monzo| 1 0 0 0 -1/4 }}
* 13- and 15-odd-limit: ~10/9 = {{monzo| 1 0 0 0 -1/4 }}
: eigenmonzo (unchanged-interval) basis: 2.11
: unchanged-interval (eigenmonzo) basis: 2.11


Tuning ranges:  
Tuning ranges:  
Line 179: Line 187:
Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~10/9 = {{monzo| 2/13 0 0 0 1/13 -1/13 }}
* 13- and 15-odd-limit: ~10/9 = {{monzo| 2/13 0 0 0 1/13 -1/13 }}
: eigenmonzo (unchanged-interval) basis: 2.13/11
: unchanged-interval (eigenmonzo) basis: 2.13/11


Tuning ranges:  
Tuning ranges:  
Line 203: Line 211:
Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/14 0 0 -1/14 0 1/14 }}
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/14 0 0 -1/14 0 1/14 }}
: eigenmonzo (unchanged-interval) basis: 2.13/7
: unchanged-interval (eigenmonzo) basis: 2.13/7


{{Optimal ET sequence|legend=0| 15f, 22f, 37, 59f }}
{{Optimal ET sequence|legend=0| 15f, 22f, 37, 59f }}
Line 222: Line 230:
Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
: eigenmonzo (unchanged-interval) basis: 2.9/7
: unchanged-interval (eigenmonzo) basis: 2.9/7


{{Optimal ET sequence|legend=0| 7, 15f, 22 }}
{{Optimal ET sequence|legend=0| 7, 15f, 22 }}
Line 229: Line 237:


== Opossum ==
== Opossum ==
Opossum can be described as 7d & 8d. Tempering out [[28/27]], the perfect fifth of three generator steps is conflated with not [[32/21]] as in porcupine but [[14/9]]. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.  
Opossum can be described as {{nowrap| 8d & 15 }}. Tempering out [[28/27]], the perfect fifth of three generator steps is conflated with not [[32/21]] as in porcupine but [[14/9]]. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 236: Line 244:


{{Mapping|legend=1| 1 2 3 4 | 0 -3 -5 -9 }}
{{Mapping|legend=1| 1 2 3 4 | 0 -3 -5 -9 }}
{{Multival|legend=1| 3 5 9 1 6 7 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 246: Line 252:


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7


{{Optimal ET sequence|legend=1| 7d, 8d, 15 }}
{{Optimal ET sequence|legend=1| 7d, 8d, 15 }}
Line 258: Line 264:


Mapping: {{mapping| 1 2 3 4 4 | 0 -3 -5 -9 -4 }}
Mapping: {{mapping| 1 2 3 4 4 | 0 -3 -5 -9 -4 }}
{{Multival|legend=1| 3 5 9 4 1 6 -4 7 -8 -20 }}


Optimal tunings:  
Optimal tunings:  
Line 266: Line 270:


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
* 11-odd-limit unchanged-interval (eigenmonzo) basis: 2.7


{{Optimal ET sequence|legend=0| 7d, 8d, 15 }}
{{Optimal ET sequence|legend=0| 7d, 8d, 15 }}
Line 284: Line 288:


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
* 13- and 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.7


{{Optimal ET sequence|legend=0| 7d, 8d, 15, 38bceff }}
{{Optimal ET sequence|legend=0| 7d, 8d, 15, 38bceff }}
Line 291: Line 295:


== Porky ==
== Porky ==
Porky can be described as 7d & 22, suggesting a less sharp perfect fifth. 7\51 is a good generator.  
Porky can be described as {{nowrap| 22 & 29 }}, suggesting a less sharp perfect fifth. 7\51 is a good generator.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 298: Line 302:


{{Mapping|legend=1| 1 2 3 5 | 0 -3 -5 -16 }}
{{Mapping|legend=1| 1 2 3 5 | 0 -3 -5 -16 }}
{{Multival|legend=1| 3 5 16 1 17 23 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 309: Line 311:
[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5


{{Optimal ET sequence|legend=1| 7d, 15d, 22, 29, 51, 73c }}
{{Optimal ET sequence|legend=1| 7d, 15d, 22, 29, 51, 73c }}
Line 321: Line 323:


Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }}
Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }}
Wedgie: {{multival| 3 5 16 4 1 17 -4 23 -8 -44 }}


Optimal tunings:  
Optimal tunings:  
Line 330: Line 330:
Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }}
* 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }}
: eigenmonzo (unchanged-interval) basis: 2.7/5
: unchanged-interval (eigenmonzo) basis: 2.7/5


{{Optimal ET sequence|legend=0| 7d, 15d, 22, 51 }}
{{Optimal ET sequence|legend=0| 7d, 15d, 22, 51 }}
Line 355: Line 355:


== Coendou ==
== Coendou ==
Coendou can be described as 7 & 29, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.  
Coendou can be described as {{nowrap| 29 & 36c }}, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 362: Line 362:


{{Mapping|legend=1| 1 2 3 1 | 0 -3 -5 13 }}
{{Mapping|legend=1| 1 2 3 1 | 0 -3 -5 13 }}
{{Multival|legend=1| 3 5 -13 1 -29 -44 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 373: Line 371:
[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.3
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3


{{Optimal ET sequence|legend=1| 7, 22d, 29, 65c, 94cd }}
{{Optimal ET sequence|legend=1| 7, 22d, 29, 65c, 94cd }}
Line 392: Line 390:
Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
* 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
: eigenmonzo (unchanged-interval) basis: 2.3
: unchanged-interval (eigenmonzo) basis: 2.3


{{Optimal ET sequence|legend=0| 7, 22d, 29, 65ce }}
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65ce }}
Line 411: Line 409:
Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
* 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
: eigenmonzo (unchanged-interval) basis: 2.3
: unchanged-interval (eigenmonzo) basis: 2.3


{{Optimal ET sequence|legend=0| 7, 22d, 29, 65cef }}
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65cef }}
Line 425: Line 423:


{{Mapping|legend=1| 1 2 3 3 | 0 -3 -5 -1 }}
{{Mapping|legend=1| 1 2 3 3 | 0 -3 -5 -1 }}
{{Multival|legend=1| 3 5 1 1 -7 -12 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 436: Line 432:
[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


{{Optimal ET sequence|legend=1| 7, 8d, 15d }}
{{Optimal ET sequence|legend=1| 7, 8d, 15d }}
Line 456: Line 452:


Badness (Smith): 0.026790
Badness (Smith): 0.026790
== Oxygen ==
Oxygen is perhaps not meant to be used as a serious temperament of harmony. Its comma basis suggests potential utility to construct [[Fokker block]]s.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 21/20, 175/162
{{Mapping|legend=1| 1 2 3 3 | 0 -3 -5 -2 }}
{{Multival|legend=1| 3 5 2 1 -5 -9 }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~10/9 = 161.341
: [[error map]]: {{val| 0.000 +14.023 +6.982 -91.507 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 169.112
: error map: {{val| 0.000 -9.291 -31.873 -107.050 }}
{{Optimal ET sequence|legend=1| 1c, …, 6bcd, 7d }}
[[Badness]] (Smith): 0.059866


== Hedgehog ==
== Hedgehog ==
{{See also| Sensamagic clan | Stearnsmic clan }}
{{See also| Sensamagic clan | Stearnsmic clan }}


Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). 22edo provides the obvious (i.e the only [[patent val]]) tuning, but if you are looking for an alternative you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is [[echidna]], which offers much more accuracy. They merge on 22edo.  
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). Its ploidacot is diploid omega-tricot.
 
22edo provides an obvious tuning, which happens to be the only [[patent val|patent-val]] tuning, but if you are looking for an alternative you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is [[echidna]], which offers much more accuracy. They merge on 22edo.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 490: Line 467:


: mapping generators: ~7/5, ~9/7
: mapping generators: ~7/5, ~9/7
{{Multival|legend=1| 6 10 10 2 -1 -5 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 509: Line 484:


Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }}
Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }}
{{Multival|legend=1| 6 10 10 8 2 -1 -8 -5 -16 -12 }}


Optimal tunings:  
Optimal tunings:  
Line 556: Line 529:


Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }}
Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }}
{{Multival|legend=1| 6 10 10 -14 2 -1 -43 -5 -67 -74 }}


Optimal tunings:  
Optimal tunings:  
Line 571: Line 542:


== Nautilus ==
== Nautilus ==
Nautilus tempers out 49/48 and may be described as the {{nowrap| 14c & 15 }} temperament. Its ploidacot is omega-hexacot.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 578: Line 551:


: mapping generators: ~2, ~21/20
: mapping generators: ~2, ~21/20
{{Multival|legend=1| 6 10 3 2 -12 -21 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 597: Line 568:


Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }}
Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }}
{{Multival|legend=1| 6 10 3 8 2 -12 -8 -21 -16 12 }}


Optimal tunings:  
Optimal tunings:  
Line 642: Line 611:


== Ammonite ==
== Ammonite ==
Ammonite adds 686/675 to the comma list and may be described as the {{nowrap| 8d & 29 }} temperament. Its ploidacot is epsilon-enneacot. [[37edo]] provides an obvious tuning.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 649: Line 620:


: mapping generators: ~2, ~9/7
: mapping generators: ~2, ~9/7
{{Multival|legend=1| 9 15 19 3 5 2 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 668: Line 637:


Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }}
Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }}
Wedgie: {{multival| 9 15 19 12 3 5 -12 2 -24 -32 }}


Optimal tunings:  
Optimal tunings:  
Line 695: Line 662:


== Ceratitid ==
== Ceratitid ==
Ceratitid adds 1728/1715 to the comma list and may be described as the {{nowrap| 21c & 22 }} temperament. Its ploidacot is omega-enneacot. [[22edo]] provides an obvious tuning.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 702: Line 671:


: mapping generators: ~2, ~36/35
: mapping generators: ~2, ~36/35
{{Multival|legend=1| 9 15 4 3 -19 -33 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 746: Line 713:


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Porcupine family| ]] <!-- main article -->
[[Category:Porcupine family| ]] <!-- main article -->
[[Category:Porcupine| ]] <!-- key article -->
[[Category:Porcupine| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]