Biyatismic clan: Difference between revisions

Update keys
 
(15 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The '''biyatismic clan''' of rank-3 temperaments tempers out the [[biyatisma]], 121/120 = {{monzo| -3 -1 -1 0 2 }}.
{{Technical data page}}
The '''biyatismic clan''' of [[Rank-3 temperament|rank-3]] [[Temperament|temperaments]] [[Tempering out|tempers out]] the [[biyatisma]], 121/120 = {{monzo| -3 -1 -1 0 2 }}.


Temperaments discussed elsewhere are:  
Temperaments discussed elsewhere are:  
Line 5: Line 6:
* ''[[Urania]]'' (+81/80) → [[Didymus rank three family #Urania|Didymus rank-3 family]]
* ''[[Urania]]'' (+81/80) → [[Didymus rank three family #Urania|Didymus rank-3 family]]
* ''[[Big brother]]'' (+99/98) → [[Nuwell family #big Brother|Nuwell family]]
* ''[[Big brother]]'' (+99/98) → [[Nuwell family #big Brother|Nuwell family]]
* ''[[Oxpecker]]'' (+126/125) → [[Starling family #Oxpecker|Starling family]]
* ''[[Artemis]]'' (+225/224) → [[Marvel family #Artemis|Marvel family]]
* ''[[Bisector]]'' (+245/243) → [[Sensamagic family #Bisector|Sensamagic family]]
* ''[[Bisector]]'' (+245/243) → [[Sensamagic family #Bisector|Sensamagic family]]


Considered below are zeus, aphrodite, and the no-7 subgroup temperament, protomere. For the rank-4 biyatismic temperament, see [[Rank-4 temperament #Biyatismic (121/120)]].  
Considered below are zeus, artemis, oxpecker, aphrodite, and the no-7 subgroup temperament, protomere. For the rank-4 biyatismic temperament, see [[Rank-4 temperament #Biyatismic (121/120)]].  


== Protomere ==
== Protomere ==
Line 18: Line 17:
{{Mapping|legend=2| 1 0 1 2 | 0 1 1 1 | 0 0 -2 -1 }}
{{Mapping|legend=2| 1 0 1 2 | 0 1 1 1 | 0 0 -2 -1 }}


: sval mapping generators: ~2, ~3, ~11/10
: Mapping generators: ~2, ~3, ~11/10


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 701.4578, ~11/10 = 157.7466
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 701.4578, ~11/10 = 157.7466
Line 27: Line 26:


== Zeus ==
== Zeus ==
{{Main| Zeus }}
{{See also| Porwell family #Zeus }}
{{See also| Porwell family #Zeus }}


Line 46: Line 46:
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 11/9 10/9 -1/3 -2/9 0 }}, {{monzo| 22/9 2/9 1/3 -4/9 0 }}, {{monzo| 22/9 2/9 -2/3 5/9 0 }}, {{monzo| 10/3 2/3 0 -1/3 0 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 11/9 10/9 -1/3 -2/9 0 }}, {{monzo| 22/9 2/9 1/3 -4/9 0 }}, {{monzo| 22/9 2/9 -2/3 5/9 0 }}, {{monzo| 10/3 2/3 0 -1/3 0 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/5.9/7
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5.9/7


{{Optimal ET sequence|legend=1| 15, 22, 31, 46, 53, 68, 77, 99, 130e }}
{{Optimal ET sequence|legend=1| 15, 22, 31, 46, 53, 68, 77, 99, 130e }}
Line 63: Line 63:
: 11/8, 45/32, 16/11, 3/2, 32/21, 8/5, 18/11, 5/3, 7/4, 16/9,
: 11/8, 45/32, 16/11, 3/2, 32/21, 8/5, 18/11, 5/3, 7/4, 16/9,
: 11/6, 15/8, 64/33, 2
: 11/6, 15/8, 64/33, 2
Scales:
* [[genus1155zeus|Euler(1155) genus in zeus temperament]]


=== 13-limit ===
=== 13-limit ===
Line 85: Line 82:
* 13-odd-limit  
* 13-odd-limit  
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 11/9 10/9 -1/3 -2/9 0 0 }}, {{monzo| 22/9 2/9 1/3 -4/9 0 0 }}, {{monzo| 22/9 2/9 -2/3 5/9 0 0 }}, {{monzo| 10/3 2/3 0 -1/3 0 0 }}, {{monzo| 14/3 -8/3 1 1/3 0 0 }}]
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 11/9 10/9 -1/3 -2/9 0 0 }}, {{monzo| 22/9 2/9 1/3 -4/9 0 0 }}, {{monzo| 22/9 2/9 -2/3 5/9 0 0 }}, {{monzo| 10/3 2/3 0 -1/3 0 0 }}, {{monzo| 14/3 -8/3 1 1/3 0 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.9/5.9/7
: unchanged-interval (eigenmonzo) basis: 2.9/5.9/7
* 15-odd-limit
* 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 0 1 0 0 0 0 }}, {{monzo| 11/5 1/5 2/5 -2/5 0 0 }}, {{monzo| 11/5 1/5 -3/5 3/5 0 0 }}, {{monzo| 13/5 3/5 1/5 -1/5 0 0 }}, {{monzo| 38/5 -12/5 1/5 -1/5 0 0 }}]
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 0 1 0 0 0 0 }}, {{monzo| 11/5 1/5 2/5 -2/5 0 0 }}, {{monzo| 11/5 1/5 -3/5 3/5 0 0 }}, {{monzo| 13/5 3/5 1/5 -1/5 0 0 }}, {{monzo| 38/5 -12/5 1/5 -1/5 0 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.3.7/5
: unchanged-interval (eigenmonzo) basis: 2.3.7/5


{{Optimal ET sequence|legend=1| 15, 22, 31, 46, 53, 77, 99, 130e }}
{{Optimal ET sequence|legend=1| 15, 22, 31, 46, 53, 77, 99, 130e }}
Line 111: Line 108:


Badness: 0.808 × 10<sup>-3</sup>
Badness: 0.808 × 10<sup>-3</sup>
== Artemis ==
Named by [[Graham Breed]] in 2011, artemis was found to be locally efficient in the higher limits among rank-3 extensions of [[marvel]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_19673.html Yahoo! Tuning Group | ''Artemis and friends'']</ref>, although it is a [[weak extension]]. However, the alternative 13-limit extension called diana is more accurate.
[[Subgroup]]: 2.3.5.7.11
[[Comma list]]: 121/120, 225/224
{{Mapping|legend=1| 1 0 1 -3 2 | 0 1 1 4 1 | 0 0 -2 -4 -1 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 699.8719, ~11/10 = 158.3232
{{Optimal ET sequence|legend=1| 9, 15d, 16d, 20, 22, 31, 53, 82e, 84e, 113e, 144ee }}
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 121/120, 196/195
Mapping: {{mapping| 1 0 1 -3 2 -5 | 0 1 1 4 1 6 | 0 0 -2 -4 -1 -6 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.7090, ~11/10 = 158.7117
{{Optimal ET sequence|legend=1| 9, 20, 22f, 29, 31 }}
=== Diana ===
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 225/224, 275/273
Mapping: {{mapping| 1 0 1 -3 2 7 | 0 1 1 4 1 -2 | 0 0 -2 -4 -1 -1 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.9789, ~11/10 = 159.0048
{{Optimal ET sequence|legend=1| 22, 29, 31, 53, 82e, 84e, 113e, 166ee }}
== Oxpecker ==
[[Subgroup]]: 2.3.5.7.11
[[Comma list]]: 121/120, 126/125
{{Mapping|legend=1| 1 0 1 2 2 | 0 1 1 1 1 | 0 0 -2 -6 -1 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 700.8882, ~11/10 = 155.7756
{{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31, 46, 77 }}
[[Badness]]: 0.699 × 10<sup>-3</sup>
=== Woodpecker ===
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 121/120, 126/125
Mapping: {{mapping| 1 0 1 2 2 2 | 0 1 1 1 1 1 | 0 0 -2 -6 -1 1 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.5946, ~11/10 = 154.8652
{{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31 }}
Badness: 1.093 × 10<sup>-3</sup>


== Aphrodite ==
== Aphrodite ==
Line 120: Line 178:
[[Comma list]]: 64827/64000
[[Comma list]]: 64827/64000


{{Mapping|legend=1| 1 0 1 3 | 0 1 1 0 | 0 0 4 3 }}
{{Mapping|legend=1| 1 0 1 3 | 0 1 1 0 | 0 0 -4 -3 }}
 
: Mapping generators: ~2, ~3, ~21/20


: mapping generators: ~2, ~3, ~21/20
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 700.2144, ~21/20 = 78.5694


{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60, 77, 91, 122, 137d, 168d }}
{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60, 77, 91, 122, 137d, 168d }}
Line 135: Line 195:
[[Comma list]]: 121/120, 441/440
[[Comma list]]: 121/120, 441/440


{{Mapping|legend=1| 1 0 1 3 2 | 0 1 1 0 1 | 0 0 4 3 2 }}
{{Mapping|legend=1| 1 0 1 3 2 | 0 1 1 0 1 | 0 0 -4 -3 -2 }}
 
: Mapping generators: ~2, ~3, ~22/21


: mapping generators: ~2, ~3, ~22/21
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.3200, ~21/20 = 78.6421


{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60e, 77, 91e, 137de, 168dee }}
{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60e, 77, 91e, 137de, 168dee }}
Line 148: Line 210:
Comma list: 121/120, 351/350, 441/440
Comma list: 121/120, 351/350, 441/440


Mapping: {{mapping| 1 0 1 3 2 6 | 0 1 1 0 1 -1 | 0 0 4 3 2 11 }}
Mapping: {{mapping| 1 0 1 3 2 6 | 0 1 1 0 1 -1 | 0 0 -4 -3 -2 -11 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.1158, ~21/20 = 78.5211


{{Optimal ET sequence|legend=1| 14cf, 31, 45ef, 46, 77, 122ee, 137def, 168deef }}
{{Optimal ET sequence|legend=1| 14cf, 31, 45ef, 46, 77, 122ee, 137def, 168deef }}
Line 155: Line 219:


==== Eros ====
==== Eros ====
Eros fairs impressively into the 23-limit as a rank 3 temperament; not only is it fairly simple (considering this is a subgroup as complex as the full 23-limit, with many challenges) but all the generators are positive (or only 1 into the negatives in the case of the fifth) meaning it's even simpler than it might appear and has the pleasing property of all harmonics and subharmonics being "on the same side"; specifically: -3 to 1 fifths ([[2L 3s]]) and -5 to 0 ~[[23/22]]'s will get you every prime, up to octave equivalence; you can think of this as a 5 by 6 grid if you like and is a recommendable place to start looking at its structure. Tempering the less accurate comma [[121/120|S11]] can be seen as a consequence of tempering {[[441/440|S21]], [[484/483|S22]], [[529/528|S23]]} so is very natural and given its properties certainly excusable. Therefore characteristic of any good tuning is the ~11 being the most flat prime, with other primes having strictly less than 5{{cent}} of error. This temperament was first logged on x31eq by [[Scott Dakota]].
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 121/120, 196/195, 352/351
Comma list: 121/120, 196/195, 352/351


Mapping: {{mapping| 1 0 1 3 2 7 | 0 1 1 0 1 -2 | 0 0 4 3 2 2 }}
Mapping: {{mapping| 1 0 1 3 2 7 | 0 1 1 0 1 -2 | 0 0 -4 -3 -2 -2 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.5014, ~21/20 = 78.6143


{{Optimal ET sequence|legend=1| 17c, 29, 31, 46, 60e, 77, 106de, 183dee }}
{{Optimal ET sequence|legend=1| 17c, 29, 31, 46, 60e, 77, 106de, 183dee }}


Badness: 1.150 × 10<sup>-3</sup>
Badness: 1.150 × 10<sup>-3</sup>
===== 17-limit =====
Note that this extension requires the 29g val for 29edo, which has the sizes of 17/16 and 18/17 swapped.
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 196/195, 352/351
Mapping: {{mapping| 1 0 1 3 2 7 6 | 0 1 1 0 1 -2 -1 | 0 0 -4 -3 -2 -2 -5 }}
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 701.9299, ~22/21 = 78.2539
* CWE: ~2 = 1\1, ~3/2 = 701.7925, ~22/21 = 78.6203
Optimal ET sequence: {{Optimal ET sequence| 17cg, 29g, 31, 46, 60e, 77, 106de }}
Badness:
* Smith: 0.979 × 10<sup>-3</sup>
* Dirichlet: 0.931
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 121/120, 154/153, 196/195, 286/285, 352/351
Mapping: {{mapping| 1 0 1 3 2 7 6 9 | 0 1 1 0 1 -2 -1 -3 | 0 0 -4 -3 -2 -2 -5 0 }}
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 701.5642, ~22/21 = 78.2353
* CWE: ~2 = 1\1, ~3/2 = 701.6963, ~22/21 = 78.6479
Optimal ET sequence: {{Optimal ET sequence| 17cg, 29g, 31, 46, 60e, 75dfgh, 77, 106de }}
Badness:
* Smith: 1.13 × 10<sup>-3</sup>
* Dirichlet: 1.159
===== 23-limit =====
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 121/120, 154/153, 161/160, 196/195, 286/285, 352/351
Mapping: {{mapping| 1 0 1 3 2 7 6 9 3 | 0 1 1 0 1 -2 -1 -3 1 | 0 0 -4 -3 -2 -2 -5 0 -1 }}
Optimal tunings:
* CTE: ~2 = 1\1, ~3 = 1901.7115, ~23/22 = 78.2054
* CWE: ~2 = 1\1, ~3 = 1901.8010, ~23/22 = 78.7188
Optimal ET sequence: {{Optimal ET sequence| 17cg, 29g, 31, 46, 60e, 75dfgh, 77, 106de }}
Badness:
* Smith: 0.939 × 10<sup>-3</sup>
* Dirichlet: 1.084


==== Inanna ====
==== Inanna ====
Line 170: Line 291:
Comma list: 105/104, 121/120, 275/273
Comma list: 105/104, 121/120, 275/273


Mapping: {{mapping| 1 0 1 3 2 1 | 0 1 1 0 1 2 | 0 0 4 3 2 7 }}
Mapping: {{mapping| 1 0 1 3 2 1 | 0 1 1 0 1 2 | 0 0 -4 -3 -2 -7 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.7754, ~21/20 = 79.6096


{{Optimal ET sequence|legend=1| 14cf, 15, 29, 31, 45ef, 60e }}
{{Optimal ET sequence|legend=1| 14cf, 15, 29, 31, 45ef, 60e }}
Line 181: Line 304:
Comma list: 91/90, 121/120, 441/440
Comma list: 91/90, 121/120, 441/440


Mapping: {{mapping| 1 0 1 3 2 -1 | 0 1 1 0 1 3 | 0 0 4 3 2 1 }}
Mapping: {{mapping| 1 0 1 3 2 -1 | 0 1 1 0 1 3 | 0 0 -4 -3 -2 -1 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.3952, ~21/20 = 78.9578


{{Optimal ET sequence|legend=1| 14cf, 15, 17c, 29, 31f, 46, 106deff, 121def }}
{{Optimal ET sequence|legend=1| 14cf, 15, 17c, 29, 31f, 46, 106deff, 121def }}


Badness: 1.151 × 10<sup>-3</sup>
Badness: 1.151 × 10<sup>-3</sup>
== Notes ==


[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Biyatismic clan| ]] <!-- main article -->
[[Category:Biyatismic clan| ]] <!-- main article -->
[[Category:Biyatismic| ]] <!-- key article -->
[[Category:Biyatismic| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Rank 3]]