Escapade family: Difference between revisions

Xenllium (talk | contribs)
mNo edit summary
 
(78 intermediate revisions by 8 users not shown)
Line 1: Line 1:
The '''escapade family''' tempers out the [[escapade_comma|escapade comma]], {{monzo|32 -7 -9}}, of size 9.492 [[cent]]s. It includes the [[Hemifamity temperaments|alphaquarter temperament]] and the [[Hemimean clan|arch temperament]].
{{Technical data page}}
 
<div style="float: right;">
[[File:Escapade.png|alt=Escapade.png|thumb|600x560px|An image of the tuning spectrum of 2.3.5.11 escapade, in terms of the generator; [[Edo]] [[patent val]] tunings are marked with vertical lines whose length indicates the edo's tolerance, i.e. half of its step size in either direction of just, and some small edos supporting the temperament are labeled.]]
</div>
 
The '''escapade family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[escapade comma]], {{monzo| 32 -7 -9 }}, of size 9.492 [[cent]]s. The defining feature of this comma is splitting [[5/3]] into sixteen quartertones of which [[5/4]] makes up seven and [[4/3]] makes up nine; therefore [[16/15]] is two generator steps. It most naturally manifests as a [[2.3.5.11 subgroup|2.3.5.11-subgroup]] temperament, tempering out [[4000/3993]] and [[5632/5625]].
 
Extensions of escapade to incorporate prime 7 (and therefore the full [[11-limit]]) include escapist ({{nowrap| 21 & 22 }}), tempering out [[225/224]] and mapping 7 to −4 generators; escaped ({{nowrap| 22 & 87 }}), tempering out [[245/243]] and mapping 7 to −26 generators; alphaquarter ({{nowrap| 65d & 87 }}), tempering out [[5120/5103]] and mapping 7 to 61 generators; septisuperfourth (a.k.a. biscapade) ({{nowrap| 22 & 86 }}), tempering out [[6144/6125]], splitting the octave in half and mapping 7 to −15 generators; and arch ({{nowrap| 43 & 87 }}), tempering out [[3136/3125]] and splitting the generator into two [[64/63]] intervals; all are considered below.


== Escapade ==
== Escapade ==
Subgroup: 2.3.5
For intervals along the chain of generators in the 2.3.5.11.31 subgroup temperament, out to 22 generators up, see the third column of [[16ed5/3#Intervals]].
 
=== 5-limit ===
[[Subgroup]]: 2.3.5
 
[[Comma list]]: 4294967296/4271484375 ({{monzo|32 -7 -9}})
 
{{Mapping|legend=1| 1 2 2 | 0 -9 7 }}
 
: mapping generators: ~2, ~16875/16384
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~16875/16384 = 55.3052
* [[POTE]]: ~2 = 1200.000, ~16875/16384 = 55.293
 
{{Optimal ET sequence|legend=1| 21, 22, 43, 65, 152, 217, 586, 803 }}
 
[[Badness]] (Smith): 0.083778


[[Comma]]: 4294967296/4271484375
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 702.253 || +0.298
|-
| 5/4 || 387.136 || +0.823
|}


[[Mapping]]: [{{Val|1 2 2}}, {{Val|0 -9 7}}]
=== 2.3.5.11 subgroup ===
Since (an ideally slightly flat) 4/3 is split in three by the interval of 3 generators, it makes sense to equate that interval to [[11/10]] by tempering out 4000/3993, and therefore the generator to {{nowrap|(11/10)/(16/15) {{=}} [[33/32]]}}; this does minimal damage to the temperament. This structure in 2.3.5.11 occurs in all extensions of escapade to include prime 7, and therefore will be considered the fount of all further extensions.


[[POTE generator]]: ~16875/16384 = 55.293
Subgroup: 2.3.5.11


{{Val list|legend=1| 21, 22, 43, 65, 152, 217, 586, 803 }}
Comma list: 4000/3993 ({{monzo|5 -1 3 -3}}), 5632/5625 ({{monzo|9 -2 -4 1}})


Badness: 0.083778
Mapping: {{Mapping| 1 2 2 3 | 0 -9 7 10 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~33/32 = 55.2760
 
{{Optimal ET sequence|legend=1| 21, 22, 43, 65, 87, 152, 369, 521e, 1194bcee, 1715bceeee }}
 
Badness: 0.0107
 
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 702.516 || +0.561
|-
| 5/4 || 386.932 || +0.618
|-
| 11/8 || 552.760 || +1.442
|}
 
=== 2.3.5.11.31 subgroup ===
One may note that the generator represents the square root of [[16/15]] and therefore it would be logical to also temper out {{nowrap| S31 {{=}} [[961/960]] }} so that the generator is equated to {{nowrap| [[32/31]] ~ [[31/30]] }} in addition to 33/32.
 
Subgroup: 2.3.5.11.31
 
Comma list: 496/495 ({{monzo| 4 -2 -1 -1 1 }}), 961/960 ({{monzo| -6 -1 -1 0 2 }}), 4000/3993 ({{monzo| 5 -1 3 -3 0 }})
 
Mapping: {{mapping| 1 2 2 3 5 | 0 -9 7 10 -1 }}
 
Optimal tuning (CTE): ~2 = 1200.000, ~32/31 = 55.276
 
{{Optimal ET sequence|legend=0| 21, 22, 43, 65, 87, 152, 369, 521e, 673e, 1194bcee, 1867bceeee }}
 
Badness (Sintel): 0.251
 
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 702.518 || +0.563
|-
| 5/4 || 386.931 || +0.617
|-
| 11/8 || 552.758 || +1.440
|-
| 31/16 || 1144.724 || -0.311
|}
 
= Strong extensions =
{| class="wikitable center-all"
|+ style="font-size: 105%;" | Map to strong full 7- and 11-limit extensions
|-
! rowspan="1" | Extension !! rowspan="1" | Mapping of 7 !! rowspan="1" | Tuning range*
|-
| [[#Escapist|Escapist]] || -4 || ↓ [[65edo|65]]
|-
| [[#Alphaquarter|Alphaquarter]] || +61 || ↑ 65 <br> ↓ [[87edo|87]]
|-
| [[#Escaped|Escaped]] || -26 || ↑ 87
|}
<nowiki/>* Defined as the range in which the extension specified has a better mapping of 7 compared to its neighboring extensions
 
== Escaped ==
''[[#Strong extensions|Return to the map]]''
 
This temperament was also known as "sensa" in earlier materials because it tempers out 245/243, 352/351, and 385/384 as a sensamagic temperament. ''Not to be confused with the {{nowrap| 19e & 27 }} temperament (sensi extension).''
 
Here, [[245/243]] is tempered out so that [[9/7]] is equated to the square root of 5/3 (at 8 generators) present in the temperament. This works best where 5/3 is slightly flat, therefore on the end of the spectrum approaching [[22edo]].


=== 7-limit ===
=== 7-limit ===
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 65625/65536
 
{{Mapping|legend=1| 1 2 2 4 | 0 -9 7 -26 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~28/27 = 55.122
 
{{Optimal ET sequence|legend=1| 22, 65, 87, 196, 283 }}
 
[[Badness]] (Smith): 0.088746
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 245/243, 385/384, 4000/3993
 
Mapping: {{mapping| 1 2 2 4 3 | 0 -9 7 -26 10 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~28/27 = 55.126
 
{{Optimal ET sequence|legend=0| 22, 65, 87, 196, 283 }}
 
Badness (Smith): 0.035844
 
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 703.831 || +1.876
|-
| 5/4 || 385.909 || -0.405
|-
| 7/4 || 966.624 || -2.202
|-
| 11/8 || 551.299 || -0.019
|}
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 245/243, 352/351, 385/384, 625/624
 
Mapping: {{mapping| 1 2 2 4 3 2 | 0 -9 7 -26 10 37 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~28/27 = 55.138
 
{{Optimal ET sequence|legend=0| 22, 65, 87, 283 }}
 
Badness (Smith): 0.031366
 
== Alphaquarter ==
''[[#Strong extensions|Return to the map]]''
 
Given the slightly sharp ~[[3/2]] in ideal tunings of escapade (between [[65edo]] and [[87edo]]), it does very little damage to temper out [[5120/5103]] to extend it to prime 7; the cost is that the harmonic 7 is exceedingly complex, located all the way at 61 generators up.
 
=== 7-limit ===
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 5120/5103, 29360128/29296875
 
{{Mapping|legend=1| 1 2 2 0 | 0 -9 7 61 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~16128/15625 = 55.243
 
{{Optimal ET sequence|legend=1| 65d, 87, 152, 239, 391 }}
 
[[Badness]] (Smith): 0.116594
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4000/3993, 5120/5103
 
Mapping: {{mapping| 1 2 2 0 3 | 0 -9 7 61 10 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~33/32 = 55.243
 
{{Optimal ET sequence|legend=0| 65d, 87, 152, 239, 391 }}
 
Badness (Smith): 0.029638
 
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 702.918 || +0.963
|-
| 5/4 || 386.620 || +0.306
|-
| 7/4 || 969.113 || +0.287
|-
| 11/8 || 552.314 || +0.996
|}
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 352/351, 625/624, 847/845, 1575/1573
 
Mapping: {{mapping| 1 2 2 0 3 2 | 0 -9 7 61 10 37 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~33/32 = 55.236
 
{{Optimal ET sequence|legend=0| 65d, 87, 152f, 239f }}
 
Badness (Smith): 0.025344
 
== Escapist ==
''[[#Strong extensions|Return to the map]]''
 
This temperament makes the identification of the 4-generator interval, representing (16/15)<sup>2</sup>, with [[8/7]] by tempering out [[225/224]] (along with [[12288/12005]]); however, this is somewhat inaccurate as the ~16/15 in escapade is slightly flat, while for a good marvel tuning it needs to be tempered sharpward to equate it with [[15/14]].
 
=== 7-limit ===
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 225/224, 12288/12005
[[Comma list]]: 225/224, 12288/12005


[[Mapping]]: [{{val|1 2 2 3}}, {{val|0 -9 7 -4}}]
{{Mapping|legend=1| 1 2 2 3 | 0 -9 7 -4 }}
 
{{Multival|legend=1|9 -7 4 -32 -19 29}}


[[POTE generator]]: ~49/48 = 55.327
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~49/48 = 55.327


{{Val list|legend=1| 21, 22, 43, 65d }}
{{Optimal ET sequence|legend=1| 21, 22, 43, 65d }}


[[Badness]]: 0.077950
[[Badness]] (Smith): 0.077950


=== 11-limit ===
=== 11-limit ===
Line 34: Line 260:
Comma list: 99/98, 176/175, 2560/2541
Comma list: 99/98, 176/175, 2560/2541


Mapping: [{{val|1 2 2 3 3}}, {{val|0 -9 7 -4 10}}]
Mapping: {{mapping| 1 2 2 3 3 | 0 -9 7 -4 10 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~33/32 = 55.354


POTE generator: ~49/48 = 55.354
{{Optimal ET sequence|legend=0| 21, 22, 43, 65d }}


Vals: {{Val list| 21, 22, 43, 65d }}
Badness (Smith): 0.036700


Badness: 0.036700
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 701.626 || -0.329
|-
| 5/4 || 387.624 || +1.310
|-
| 7/4 || 978.501 || +9.675
|-
| 11/8 || 553.749 || +2.431
|}


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 78/77, 99/98, 176/175, 507/500
Comma list: 78/77, 99/98, 176/175, 507/500


Mapping: [{{val|1 2 2 3 3 3}}, {{val|0 -9 7 -4 10 15}}]
Mapping: {{mapping| 1 2 2 3 3 3 | 0 -9 7 -4 10 15 }}


POTE generator: ~26/25 = 55.550
Optimal tuning (POTE): ~2 = 1200.000, ~26/25 = 55.550


Vals: {{Val list| 21, 22, 43 }}
{{Optimal ET sequence|legend=0| 21, 22, 43 }}


Badness: 0.035261
Badness (Smith): 0.035261


== Escaped ==
= Weak extensions =
{{See also|Sensamagic clan #Escaped}}
{| class="wikitable center-all"
|+ style="font-size: 105%;" | Map to weak extensions
|-
! rowspan="2" | Extensions !! rowspan="2" | Periods per octave !! colspan="2" | Position of original generator
|-
! Number of generators !! Number of periods
|-
| [[#Septisuperfourth|Septisuperfourth]] || period = 1/2 octave || 1 generator || + 0 periods
|-
| [[#Arch|Arch]] || period = octave || 2 generators || + 0 periods
|}


This temperament is also known as "sensa" because it tempers out 245/243, 352/351, and 385/384 as a sensamagic temperament. ''Not to be confused with 19e&amp;27 temperament (sensi extension).''
== Septisuperfourth ==
''[[#Weak extensions|Return to map]]''


Subgroup: 2.3.5.7
=== 7-limit ===
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 245/243, 65625/65536
[[Comma list]]: 6144/6125, 118098/117649


[[Mapping]]: [{{val| 1 2 2 4 }}, {{val| 0 -9 7 -26 }}]
{{Mapping|legend=1| 2 4 4 7 | 0 -9 7 -15 }}


{{Multival|legend=1| 9 -7 26 -32 16 80 }}
: mapping generators: ~343/243, ~16875/16384


[[POTE generator]]: ~28/27 = 55.122
[[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~16875/16384 = 55.320


{{Val list|legend=1| 22, 65, 87, 196, 283 }}
{{Optimal ET sequence|legend=1| 22, 86, 108, 130, 152, 282 }}


[[Badness]]: 0.088746
[[Badness]] (Smith): 0.059241


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 245/243, 385/384, 4000/3993
Comma list: 540/539, 4000/3993, 5632/5625
 
Mapping: {{mapping| 2 4 4 7 6 | 0 -9 7 -15 10 }}
 
Optimal tuning (POTE): ~99/70 = 600.000, ~33/32 = 55.304
 
{{Optimal ET sequence|legend=0| 22, 86, 108, 130, 152, 282 }}
 
Badness (Smith): 0.024619
 
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 702.070 || +0.115
|-
| 5/4 || 387.279 || +0.965
|-
| 7/4 || 970.117 || +1.291
|-
| 11/8 || 553.255 || +1.937
|}
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 540/539, 729/728, 1575/1573, 3584/3575
 
Mapping: {{mapping| 2 4 4 7 6 11 | 0 -9 7 -15 10 -39 }}


Mapping: [{{val| 1 2 2 4 3 }}, {{val| 0 -9 7 -26 10 }}]
Optimal tuning (POTE): ~99/70 = 600.000, ~33/32 = 55.325


POTE generator: ~28/27 = 55.126
{{Optimal ET sequence|legend=0| 22f, 108f, 130, 282 }}


Vals: {{Val list| 22, 65, 87, 196, 283 }}
Badness (Smith): 0.022887


Badness: 0.035844
==== Septisuperquad ====
This temperament is also known as "biscapade".


=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 245/243, 352/351, 385/384, 625/624
Comma list: 351/350, 364/363, 540/539, 4096/4095
 
Mapping: {{mapping| 2 4 4 7 6 5 | 0 -9 7 -15 10 26 }}


Mapping: [{{val| 1 2 2 4 3 2 }}, {{val| 0 -9 7 -26 10 37 }}]
Optimal tuning (POTE): ~55/39 = 600.000, ~33/32 = 55.359


POTE generator: ~28/27 = 55.138
{{Optimal ET sequence|legend=0| 22, 108, 130 }}


Vals: {{Val list| 22, 65, 87, 283 }}
Badness (Smith): 0.033038


Badness: 0.031366
== Arch ==
''[[#Weak extensions|Return to map]]''


== Biscapade ==
=== 7-limit ===
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 6144/6125, 118098/117649
[[Comma list]]: 3136/3125, 5250987/5242880


[[Mapping]]: [{{val|2 4 4 7}}, {{val|0 -9 7 -15}}]
{{Mapping|legend=1| 1 2 2 2 | 0 -18 14 35 }}


{{Multival|legend=1|18 -14 30 -64 -3 109}}
: mapping generators: ~2, ~64/63


[[POTE generator]]: ~16875/16384 = 55.320
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~64/63 = 27.668


{{Val list|legend=1| 22, 86, 108, 130, 152, 282 }}
{{Optimal ET sequence|legend=1| 43, 87, 130, 217, 347, 824c, 1171c, 1518cd }}


[[Badness]]: 0.059241
[[Badness]] (Smith): 0.094345


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 540/539, 4000/3993, 5632/5625
Comma list: 441/440, 3136/3125, 4000/3993
 
Mapping: {{mapping| 1 2 2 2 3 | 0 -18 14 35 20 }}


Mapping: [{{val|2 4 4 7 6}}, {{val|0 -9 7 -15 10}}]
Optimal tuning (POTE): ~2 = 1200.000, ~64/63 = 27.663


POTE generator: ~33/32 = 55.304
{{Optimal ET sequence|legend=0| 43, 87, 130, 217, 347e, 911cde }}


Vals: {{Val list| 22, 86, 108, 130, 152, 282 }}
Badness (Smith): 0.036541


Badness: 0.024619
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed"
|+ style="font-size: 105%;" | Harmonics
|-
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings
|-
! CTE tuning !! Deviation from just
|-
| 3/2 || 702.178 || +0.223
|-
| 5/4 || 387.195 || +0.881
|-
| 7/4 || 967.987 || -0.839
|-
| 11/8 || 553.135 || +1.817
|}


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 351/350, 364/363, 540/539, 4096/4095
Comma list: 364/363, 441/440, 676/675, 3136/3125


Mapping: [{{val|2 4 4 7 6 5}}, {{val|0 -9 7 -15 10 26}}]
Mapping: {{mapping| 1 2 2 2 3 4 | 0 -18 14 35 20 -13 }}


POTE generator: ~33/32 = 55.359
Optimal tuning (POTE): ~2 = 1200.000, ~64/63 = 27.660


Vals: {{Val list| 22, 108, 130 }}
{{Optimal ET sequence|legend=0| 43, 87, 130, 217, 347e, 564e }}


Badness: 0.033038
Badness (Smith): 0.019504


[[Category:Theory]]
[[Category:Temperament families]]
[[Category:Temperament family]]
[[Category:Pages with mostly numerical content]]
[[Category:Escapade]]
[[Category:Escapade family| ]] <!-- main article -->
[[Category:Rank 2]]