Ragismic microtemperaments: Difference between revisions

+countritonic
 
(41 intermediate revisions by 11 users not shown)
Line 1: Line 1:
The ragisma is [[4375/4374]] with a [[monzo]] of {{monzo| -1 -7 4 1 }}, the smallest 7-limit [[superparticular]] ratio. Since (10/9)<sup>4</sup> = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)<sup>2</sup>, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
{{Technical data page}}
This is a collection of [[rank-2 temperament|rank-2]] [[regular temperament|temperaments]] [[tempering out]] the ragisma, [[4375/4374]] ({{monzo| -1 -7 4 1 }}). The ragisma is the smallest [[7-limit]] [[superparticular ratio]].  


Temperaments discussed elsewhere include:
Since {{nowrap|(10/9)<sup>4</sup> {{=}} (4375/4374)⋅(32/21) }}, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have {{nowrap| 7/6 {{=}} (4375/4374)⋅(27/25)<sup>2</sup> }}, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
* ''[[Hystrix]]'', {36/35, 160/147} → [[Porcupine family #Hystrix|Porcupine family]]
* ''[[Rhinoceros]]'', {49/48, 4375/4374} → [[Unicorn family #Rhinoceros|Unicorn family]]
* ''[[Crepuscular]]'', {50/49, 4375/4374} → [[Jubilismic clan #Crepuscular|Jubilismic clan]] and [[Fifive family #Crepuscular|Fifive family]]
* ''[[Modus]]'', {64/63, 4375/4374} → [[Tetracot family #Modus|Tetracot family]]
* ''[[Flattone]]'', {81/80, 525/512} → [[Meantone family #Flattone|Meantone family]]
* [[Sensi]], {126/125, 245/243} → [[Sensipent family #Sensi|Sensipent family]] and [[Sensamagic clan #Sensi|Sensamagic clan]]
* [[Catakleismic]], {225/224, 4375/4374} → [[Kleismic family #Catakleismic|Kleismic family]]
* [[Unidec]], {1029/1024, 4375/4374} → [[Gamelismic clan #Unidec|Gamelismic clan]]
* ''[[Quartonic]]'', {1728/1715, 4000/3969} → [[Orwellismic temperaments #Quartonic|Orwellismic temperaments]]
* ''[[Srutal]]'', {2048/2025, 4375/4374} → [[Diaschismic family #Srutal|Diaschismic family]]
* ''[[Maja]]'', {2430/2401, 3125/3087} → [[Maja family #Septimal maja|Maja family]]
* [[Amity]], {4375/4374, 5120/5103} → [[Amity family #Septimal amity|Amity family]]
* [[Pontiac]], {4375/4374, 32805/32768} → [[Schismatic family #Pontiac|Schismatic family]]
* ''[[Zarvo]]'', {4375/4374, 33075/32768} → [[Gravity family #Zarvo|Gravity family]]
* ''[[Whirrschmidt]]'', {4375/4374, 393216/390625} → [[Würschmidt family #Whirrschmidt|Würschmidt family]]
* ''[[Mitonic]]'', {4375/4374, 2100875/2097152} → [[Minortonic family #Mitonic|Minortonic family]]
* ''[[Vishnu]]'', {4375/4374, 29360128/29296875} → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]]
* ''[[Vulture]]'', {4375/4374, 33554432/33480783} → [[Vulture family #Septimal vulture|Vulture family]]
* ''[[Trillium]]'', {4375/4374, {{monzo| 40 -22 -1 -1 }}} → [[Tricot family #Trillium|Tricot family]]
* ''[[Unlit]]'', {4375/4374, {{monzo| 41 -20 -4 }}} → [[Undim family #Unlit|Undim family]]
* ''[[Quindro]]'', {4375/4374, {{monzo| 56 -28 -5 }}} → [[Quindromeda family #Quindro|Quindromeda family]]
* ''[[Dzelic]]'', {4375/4374, {{monzo|-223 47 -11 62}}} → [[37th-octave temperaments#Dzelic|37th-octave temperaments]]
Microtemperaments considered below are ennealimmal, supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, orga, chlorine, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium.  


Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci.  
Microtemperaments considered below, sorted by [[badness]], are supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, crazy, orga, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are:
* ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]]
* ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]]
* ''[[Crepuscular]]'' (+50/49) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]]
* [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]]
* [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]]
* [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]]
* ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]]
* ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]]
* [[Ennealimmal]] (+2401/2400) → [[Septiennealimmal clan #Ennealimmal|Septiennealimmal clan]]
* ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]]
* [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]]
* [[Pontiac]] (+32805/32768) → [[Schismatic family #Pontiac|Schismatic family]]
* ''[[Zarvo]]'' (+33075/32768) → [[Gravity family #Zarvo|Gravity family]]
* ''[[Whirrschmidt]]'' (+393216/390625) → [[Würschmidt family #Whirrschmidt|Würschmidt family]]
* ''[[Mitonic]]'' (+2100875/2097152) → [[Minortonic family #Mitonic|Minortonic family]]
* ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]]
* ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]]
* ''[[Alphatrillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Alphatricot family #Trillium|Alphatricot family]]
* ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]]
* ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]]
* ''[[Chlorine]]'' (+{{monzo| -52 -17 34}}) → [[17th-octave temperaments #Chlorine|17th-octave temperaments]]
* ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]]
* ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]]


== Ennealimmal ==
== Supermajor ==
{{Main| Ennealimmal }}
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos.


Ennealimmal tempers out the two smallest 7-limit [[superparticular]] commas, 2401/2400 and 4375/4374, leading to a temperament of unusual [[efficiency]]. It also tempers out the [[ennealimma]], {{monzo| 1 -27 18 }}, which leads to the identification of (27/25)<sup>9</sup> with the [[octave]], and gives ennealimmal a [[period]] of 1/9 octave. Its [[pergen]] is (P8/9, P5/2). While 27/25 is a 5-limit interval, a stack of two periods equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.
[[Subgroup]]: 2.3.5.7


Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.
[[Comma list]]: 4375/4374, 52734375/52706752


If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "[[tritave]]s" as analogous to octaves might consider the 28 or 43 note [[mos]] with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave mos, which is equivalent in average step size to a 17 2/3 to the octave mos.
{{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }}


Ennealimmal extensions discussed elsewhere include [[Compton family #Omicronbeta|omicronbeta]], [[Tritrizo clan #Undecentic|undecentic]], [[Tritrizo clan #Schisennealimmal|schisennealimmal]], and [[Tritrizo clan #Lunennealimmal|lunennealimmal]].
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082


[[Subgroup]]: 2.3.5.7
{{Optimal ET sequence|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }}


[[Comma list]]: 2401/2400, 4375/4374
[[Badness]]: 0.010836


[[Mapping]]: [{{val| 9 1 1 12 }}, {{val| 0 2 3 2 }}]
=== Semisupermajor ===
Subgroup: 2.3.5.7.11


{{Multival|legend=1| 18 27 18 1 -22 -34 }}
Comma list: 3025/3024, 4375/4374, 35156250/35153041


Mapping generators: ~27/25, ~5/3
Mapping: {{mapping| 2 30 38 60 41 | 0 -37 -46 -75 -47 }}


[[Optimal tuning]] ([[POTE]]): ~27/25 = 1\9, ~5/3 = 884.3129 (~36/35 = 49.0205)
Optimal tuning (POTE): ~99/70 = 1\2, ~9/7 = 435.082


[[Tuning ranges]]:
{{Optimal ET sequence|legend=1| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}
* 7-odd-limit [[diamond monotone]]: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
* 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
* 7- and 9-odd-limit [[diamond tradeoff]]: ~36/35 = [48.920, 49.179]
* 7- and 9-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 49.179]


{{Optimal ET sequence|legend=1| 27, 45, 72, 99, 171, 441, 612 }}
Badness: 0.012773


[[Badness]]: 0.003610
== Enneadecal ==
Enneadecal temperament tempers out the [[enneadeca]], {{monzo| -14 -19 19 }}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out [[703125/702464]], the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)<sup>1/3</sup>. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5- or 7-limit, and [[494edo]] shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning.


=== 11-limit ===
''For the 5-limit temperament, see [[19th-octave temperaments#(5-limit) enneadecal]].''
The ennealimmal temperament can be described as 99e &amp; 171e, which tempers out [[5632/5625]] (vishdel comma) and [[19712/19683]] (symbiotic comma).


Subgroup: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7


Comma list: 2401/2400, 4375/4374, 5632/5625
[[Comma list]]: 4375/4374, 703125/702464


Mapping: [{{val| 9 1 1 12 -75 }}, {{val| 0 2 3 2 16 }}]
{{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }}


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4679 (~36/35 = 48.8654)
: mapping generators: ~28/27, ~3


{{Optimal ET sequence|legend=1| 99e, 171e, 270, 909, 1179, 1449c, 1719c }}
[[Optimal tuning]] ([[CTE]]): ~28/27 = 1\19, ~3/2 = 701.9275 (~225/224 = 7.1907)


Badness: 0.027332
{{Optimal ET sequence|legend=1| 19, …, 152, 171, 665, 836, 1007, 2185, 3192c }}


==== 13-limit ====
[[Badness]]: 0.010954
Subgroup: 2.3.5.7.11.13


Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 9 1 1 12 -75 93 }}, {{val| 0 2 3 2 16 -9 }}]
Comma list: 540/539, 4375/4374, 16384/16335


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030)
Mapping: {{mapping| 19 0 14 -37 126 | 0 1 1 3 -2 }}


{{Optimal ET sequence|legend=1| 99e, 171e, 270 }}
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 702.1483 (~225/224 = 7.4115)


Badness: 0.029404
{{Optimal ET sequence|legend=1| 19, 133d, 152, 323e, 475de, 627de }}


===== 17-limit =====
Badness: 0.043734
Subgroup: 2.3.5.7.11.13.17


Comma list: 715/714, 1001/1000, 1716/1715, 4096/4095, 4375/4374
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 9 1 1 12 -75 93 -3 }}, {{val| 0 2 3 2 16 -9 6 }}]
Comma list: 540/539, 625/624, 729/728, 2205/2197


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030)
Mapping: {{mapping| 19 0 14 -37 126 -20 | 0 1 1 3 -2 3 }}


{{Optimal ET sequence|legend=1| 99e, 171e, 270 }}
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 701.9258 (~225/224 = 7.1890)


===== 19-limit =====
{{Optimal ET sequence|legend=1| 19, 133df, 152f, 323ef }}
Subgroup: 2.3.5.7.11.13.17.19
 
Badness: 0.033545


Comma list: 715/714, 1001/1000, 1216/1215, 1716/1715, 4096/4095, 4375/4374
=== Hemienneadecal ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 9 1 1 12 -75 93 -3 -48 }}, {{val| 0 2 3 2 16 -9 6 13 }}]
Comma list: 3025/3024, 4375/4374, 234375/234256


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030)
Mapping: {{mapping| 38 0 28 -74 11 | 0 1 1 3 2 }}


{{Optimal ET sequence|legend=1| 99e, 171e, 270 }}
: mapping generators: ~55/54, ~3


==== Ennealimmalis ====
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9351 (~225/224 = 7.1983)
Subgroup: 2.3.5.7.11.13


Comma list: 2080/2079, 2401/2400, 4375/4374, 5632/5625
{{Optimal ET sequence|legend=1| 152, 342, 836, 1178, 2014, 3192ce, 5206ce }}


Mapping: [{{val| 9 1 1 12 -75 -106 }}, {{val| 0 2 3 2 16 21 }}]
Badness: 0.009985


Optimal tuning (CTE): ~27/25 = 1\9, ~5/3 = 884.4560 (~36/35 = 48.8773)
==== Hemienneadecalis ====
Subgroup: 2.3.5.7.11.13


{{Optimal ET sequence|legend=1| 99ef, 171ef, 270, 639, 909, 1179, 2088bce }}
Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256


Badness: 0.022068
Mapping: {{mapping| 38 0 28 -74 11 -281 | 0 1 1 3 2 7 }}


=== Ennealimmia ===
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9955 (~225/224 = 7.2587)
The ennealimmia temperament is an alternative extension and can be described as 99 & 171, which tempers out [[131072/130977]] (olympia).


Subgroup: 2.3.5.7.11
{{Optimal ET sequence|legend=1| 152f, 342f, 494 }}


Comma list: 2401/2400, 4375/4374, 131072/130977
Badness: 0.020782


Mapping: [{{val| 9 1 1 12 124 }}, {{val| 0 2 3 2 -14 }}]
==== Hemienneadec ====
Subgroup: 2.3.5.7.11.13


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4089 (~36/35 = 48.9244)
Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213


{{Optimal ET sequence|legend=1| 99, 171, 270, 711, 981, 1251, 2232e }}
Mapping: {{mapping| 38 0 28 -74 11 502 | 0 1 1 3 2 -6 }}


Badness: 0.026463
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9812 (~225/224 = 7.2444)


==== 13-limit ====
{{Optimal ET sequence|legend=1| 152, 342, 494, 1330, 1824, 2318d }}
Subgroup: 2.3.5.7.11.13


Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374
Badness: 0.030391


Mapping: [{{val| 9 1 1 12 124 93 }}, {{val| 0 2 3 2 -14 -9 }}]
==== Semihemienneadecal ====
Subgroup: 2.3.5.7.11.13


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
Comma list: 3025/3024, 4225/4224, 4375/4374, 78125/78078


{{Optimal ET sequence|legend=1| 99, 171, 270, 711, 981, 1692e, 2673e }}
Mapping: {{mapping| 38 1 29 -71 13 111 | 0 2 2 6 4 1 }}


Badness: 0.016607
: mapping generators: ~55/54 = 1\38, ~55/54, ~429/250


===== 17-limit =====
Optimal tuning (CTE): ~429/250 = 935.1789 (~144/143 = 12.1895)
Subgroup: 2.3.5.7.11.13.17


Comma list: 936/935, 2080/2079, 2401/2400, 4096/4095, 4375/4374
{{Optimal ET sequence|legend=1| 190, 304d, 494, 684, 1178, 2850, 4028ce }}


Mapping: [{{val| 9 1 1 12 124 93 -3 }}, {{val| 0 2 3 2 -14 -9 6 }}]
Badness: 0.014694


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
=== Kalium ===
 
Named after the 19th element, potassium, and after an archaic variant of the element's name to resolve a name conflict. [[19/16]] can be used as a generator. Since it is enfactored in the 17-limit and lower, it makes no sense to name it for the lower subgroups.
{{Optimal ET sequence|legend=1| 99, 171, 270 }}


===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 936/935, 1216/1215, 2080/2079, 2401/2400, 4096/4095, 4375/4374
Comma list: 2500/2499, 3250/3249, 4225/4224, 4375/4374, 11016/11011, 57375/57344


Mapping: [{{val| 9 1 1 12 124 93 -3 -48 }}, {{val| 0 2 3 2 -14 -9 6 13 }}]
Mapping: {{mapping| 19 3 17 -28 82 92 159 78 | 0 10 10 30 -6 -8 -30 1 }}


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
Optimal tuning (CTE): ~28/27 = 1\19, ~6545/5928 = 171.244


{{Optimal ET sequence|legend=1| 99, 171, 270 }}
{{Optimal ET sequence|legend=1| 855, 988, 1843 }}


=== Ennealimnic ===
== Semidimi ==
Ennealimnic (72 &amp; 171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].''


Subgroup: 2.3.5.7.11
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo| -12 -73 55 }} and 7-limit 3955078125/3954653486, as well as 4375/4374.


Comma list: 243/242, 441/440, 4375/4356
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 9 1 1 12 -2 }}, {{val| 0 2 3 2 5 }}]
[[Comma list]]: 4375/4374, 3955078125/3954653486


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9386 (~36/35 = 49.3948)
{{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }}


Tuning ranges:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270
* 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
* 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
* 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]


{{Optimal ET sequence|legend=1| 72, 171, 243 }}
{{Optimal ET sequence|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }}


Badness: 0.020347
[[Badness]]: 0.015075


==== 13-limit ====
== Brahmagupta ==
Subgroup: 2.3.5.7.11.13
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625.  


Comma list: 243/242, 364/363, 441/440, 625/624
Early in the design of the [[Sagittal]] notation system, Secor and Keenan found that an economical JI notation system could be defined, which divided the apotome (Pythagorean sharp or flat) into 21 almost-equal divisions. This required only 10 microtonal accidentals, although a few others were added for convenience in alternative spellings. This is called the Athenian symbol set (which includes the Spartan set). Its symbols are defined to exactly notate many common 11-limit ratios and the 17th harmonic, and to approximate within ±0.4 ¢ many common 13-limit ratios. If the divisions were made exactly equal, this would be the specific tuning of Brahmagupta temperament that has pure octaves and pure fifths, which can also be described as a 17-limit extension having 1/7th octave period (171.4286 ¢) and 1/21st apotome generator (5.4136 ¢).


Mapping: [{{val| 9 1 1 12 -2 -33 }}, {{val| 0 2 3 2 5 10 }}]
[[Subgroup]]: 2.3.5.7


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9920 (~36/35 = 49.3414)
[[Comma list]]: 4375/4374, 70368744177664/70338939985125


Tuning ranges:
{{Mapping|legend=1| 7 2 -8 53 | 0 3 8 -11 }}
* 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
* 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
* 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]


{{Optimal ET sequence|legend=1| 72, 171, 243 }}
: mapping generators: ~1157625/1048576, ~27/20


Badness: 0.023250
[[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716


===== 17-limit =====
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 1106, 1547 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 243/242, 364/363, 375/374, 441/440, 595/594
[[Badness]]: 0.029122


Mapping: [{{val| 9 1 1 12 -2 -33 -3 }}, {{val| 0 2 3 2 5 10 6 }}]
=== 11-limit ===
Subgroup: 2.3.5.7.11


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9981 (~36/35 = 49.3353)
Comma list: 4000/3993, 4375/4374, 131072/130977


Tuning ranges:  
Mapping: {{mapping| 7 2 -8 53 3 | 0 3 8 -11 7 }}
* 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
* 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
* 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]


{{Optimal ET sequence|legend=1| 72, 171, 243 }}
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.704


Badness: 0.014602
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771ee }}


===== 19-limit =====
Badness: 0.052190
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 243/242, 364/363, 375/374, 441/440, 513/512, 595/594
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 9 1 1 12 -2 -33 -3 78  }}, {{val| 0 2 3 2 5 10 6 -6 }}]
Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374


{{Optimal ET sequence|legend=1| 72, 171, 243 }}
Mapping: {{mapping| 7 2 -8 53 3 35 | 0 3 8 -11 7 -3 }}


==== Ennealim ====
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.706
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 243/242, 325/324, 441/440
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771eef }}


Mapping: [{{val| 9 1 1 12 -2 20 }}, {{val| 0 2 3 2 5 2 }}]
Badness: 0.023132


Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
== Abigail ==
Abigail temperament tempers out the [[pessoalisma]] in addition to the ragisma in the 7-limit. It was named by Gene Ward Smith after the birthday of First Lady Abigail Fillmore.<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_17927.html#17930]: "I propose Abigail as a name, on the grounds 313/1798 is an excellent generator, and Abigail Fillmore, wife of Millard, was born on 3-13-1798 at least as Americans recon things."</ref>


{{Optimal ET sequence|legend=1| 27e, 45ef, 72 }}
''For the 5-limit temperament, see [[Very high accuracy temperaments#Abigail]].''


Badness: 0.020697
[[Subgroup]]: 2.3.5.7


===== 17-limit =====
[[Comma list]]: 4375/4374, 2147483648/2144153025
Subgroup: 2.3.5.7.11.13.17


Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
{{Mapping|legend=1| 2 7 13 -1 | 0 -11 -24 19 }}


Mapping: [{{val| 9 1 1 12 -2 20 -3 }}, {{val| 0 2 3 2 5 2 6 }}]
: mapping generators: ~46305/32768, ~27/20


Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
[[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899


{{Optimal ET sequence|legend=1| 27eg, 45efg, 72 }}
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }}


===== 19-limit =====
[[Badness]]: 0.037000
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
=== 11-limit ===
 
Mapping: [{{val| 9 1 1 12 -2 20 -3 25 }}, {{val| 0 2 3 2 5 2 6 2 }}]
 
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
 
{{Optimal ET sequence|legend=1| 27eg, 45efg, 72 }}
 
=== Ennealiminal ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 385/384, 1375/1372, 4375/4374
Comma list: 3025/3024, 4375/4374, 131072/130977


Mapping: [{{val| 9 1 1 12 51 }}, {{val| 0 2 3 2 -3 }}]
Mapping: {{mapping| 2 7 13 -1 1 | 0 -11 -24 19 17 }}


Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.8298 (~36/35 = 49.5036)
Optimal tuning (POTE): ~99/70 = 1\2, ~1155/1024 = 208.901


{{Optimal ET sequence|legend=1| 27, 45, 72, 171e, 243e, 315e }}
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764 }}


Badness: 0.031123
Badness: 0.012860


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 325/324, 385/384, 1375/1372
Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095


Mapping: [{{val| 9 1 1 12 51 20 }}, {{val| 0 2 3 2 -3 2 }}]
Mapping: {{mapping| 2 7 13 -1 1 -2 | 0 -11 -24 19 17 27 }}


Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
Optimal tuning (POTE): ~99/70 = 1\2, ~44/39 = 208.903


{{Optimal ET sequence|legend=1| 27, 45f, 72, 171ef, 243eff }}
{{Optimal ET sequence|legend=1| 46, 178, 224, 270, 494, 764, 1258 }}


Badness: 0.030325
Badness: 0.008856


===== 17-limit =====
== Gamera ==
Subgroup: 2.3.5.7.11.13.17
''For the 5-limit temperament, see [[High badness temperaments#Gamera]].
 
[[Subgroup]]: 2.3.5.7


Comma list: 169/168, 221/220, 325/324, 385/384, 1375/1372
[[Comma list]]: 4375/4374, 589824/588245


Mapping: [{{val| 9 1 1 12 51 20 50 }}, {{val| 0 2 3 2 -3 2 -2 }}]
{{Mapping|legend=1| 1 6 10 3 | 0 -23 -40 -1 }}


Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
: mapping generators: ~2, ~8/7


{{Optimal ET sequence|legend=1| 27, 45f, 72 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336


===== 19-limit =====
{{Optimal ET sequence|legend=1| 26, 73, 99, 224, 323, 422, 745d }}
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 153/152, 169/168, 221/220, 325/324, 385/384, 1375/1372
[[Badness]]: 0.037648
 
Mapping: [{{val| 9 1 1 12 51 20 50 25 }}, {{val| 0 2 3 2 -3 2 -2 2 }}]
 
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
 
{{Optimal ET sequence|legend=1| 27, 45f, 72 }}
 
=== Hemiennealimmal ===
Hemiennealimmal (72 &amp; 198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out [[9801/9800]] leads an octave split into two equal parts.


=== Hemigamera ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 4375/4374
Comma list: 3025/3024, 4375/4374, 589824/588245


Mapping: [{{val| 18 0 -1 22 48 }}, {{val| 0 2 3 2 1 }}]
Mapping: {{mapping| 2 12 20 6 5 | 0 -23 -40 -1 5 }}


Mapping generators: ~80/77, ~400/231
: mapping generators: ~99/70, ~8/7


Optimal tuning (POTE): ~80/77 = 1\18, ~400/231 = 950.9553
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3370


Tuning ranges:
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646, 1068d }}
* 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
* 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
* 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]


{{Optimal ET sequence|legend=1| 72, 198, 270, 342, 612, 954, 1566 }}
Badness: 0.040955
 
Badness: 0.006283


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024
Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024


Mapping: [{{val| 18 0 -1 22 48 -19 }}, {{val| 0 2 3 2 1 6 }}]
Mapping: {{mapping| 2 12 20 6 5 17 | 0 -23 -40 -1 5 -25 }}


Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3373


Tuning ranges:
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646f, 1068df }}
* 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
* 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
* 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
* 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
* 13-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.309]
* 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]


{{Optimal ET sequence|legend=1| 72, 198, 270 }}
Badness: 0.020416


Badness: 0.012505
=== Semigamera ===
Subgroup: 2.3.5.7.11


===== 17-limit =====
Comma list: 4375/4374, 14641/14580, 15488/15435
Subgroup: 2.3.5.7.11.13.17


Comma list: 676/675, 715/714, 1001/1000, 1716/1715, 3025/3024
Mapping: {{mapping| 1 6 10 3 12 | 0 -46 -80 -2 -89 }}


Mapping: [{{val| 18 0 -1 22 48 -19 -12 }}, {{val| 0 2 3 2 1 6 6 }}]
: mapping generators: ~2, ~77/72


Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1642


{{Optimal ET sequence|legend=1| 72, 198g, 270 }}
{{Optimal ET sequence|legend=1| 73, 125, 198, 323, 521 }}


===== 19-limit =====
Badness: 0.078
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 676/675, 715/714, 1001/1000, 1331/1330, 1716/1715, 3025/3024
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 18 0 -1 22 48 -19 -12 48 105 }}, {{val| 0 2 3 2 1 6 6 -2 }}]
Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580


Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
Mapping: {{mapping| 1 6 10 3 12 18 | 0 -46 -80 -2 -89 -149 }}


{{Optimal ET sequence|legend=1| 72, 198g, 270 }}
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1628


==== Semihemiennealimmal ====
{{Optimal ET sequence|legend=1| 73f, 125f, 198, 323, 521 }}
Subgroup: 2.3.5.7.11.13
 
Badness: 0.044
 
== Crazy ==
: ''For the 5-limit version, see [[Very high accuracy temperaments #Kwazy]].''


Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374
Crazy tempers out the [[kwazy comma]] in the 5-limit, and adds the ragisma to extend it to the 7-limit. It can be described as the {{nowrap| 118 & 494 }} temperament. [[1106edo]] is an strong tuning.


Mapping: [{{val| 18 0 -1 22 48 88 }}, {{val| 0 4 6 4 2 -3 }}]
[[Subgroup]]: 2.3.5.7


Mapping generators: ~80/77, ~1053/800
[[Comma list]]: 4375/4374, {{monzo| -53 10 16 }}


Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
{{Mapping|legend=1| 2 1 6 -15 | 0 8 -5 76 }}


{{Optimal ET sequence|legend=1| 126, 144, 270, 684, 954 }}
: mapping generators: ~332150625/234881024, ~1125/1024


Badness: 0.013104
[[Optimal tuning]]s:  
* [[CTE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7475
* [[error map]]: {{val| 0.0000 +0.0253 -0.0514 -0.0133 }}
* [[CWE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7474
* error map: {{val| 0.0000 +0.0244 -0.0508 -0.0218 }}


===== 17-limit =====
{{Optimal ET sequence|legend=1| 118, 376, 494, 612, 1106, 1718 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 2401/2400, 2431/2430, 3025/3024, 4225/4224, 4375/4374
[[Badness]] (Smith): 0.0394


Mapping: [{{val| 18 0 -1 22 48 88 -119 }}, {{val| 0 4 6 4 2 -3 27 }}]
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping generators: ~80/77, ~1053/800
Comma list: 3025/3024, 4375/4374, 2791309312/2790703125


Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
Mapping: {{mapping| 2 1 6 -15 -8 | 0 8 -5 76 55 }}


{{Optimal ET sequence|legend=1| 270, 684, 954 }}
Optimal tunings:
* CTE: ~99/70 = 162.7485, ~1125/1024 = 162.7485
* CWE: ~99/70 = 162.7485, ~1125/1024 = 162.7481


Badness: 0.013104
{{Optimal ET sequence|legend=0| 118, 376, 494, 612, 1106, 2824, 3930e }}


===== 19-limit =====
Badness (Smith): 0.0170
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 2401/2400, 2431/2430, 2926/2925, 3025/3024, 4225/4224, 4375/4374
== Orga ==
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 18 0 -1 22 48 88 -119 -2 }}, {{val| 0 4 6 4 2 -3 27 11 }}]
[[Comma list]]: 4375/4374, 54975581388800/54936068900769


Mapping generators: ~80/77, ~1053/800
{{Mapping|legend=1| 2 21 36 5 | 0 -29 -51 1 }}


Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
: mapping generators: ~7411887/5242880, ~1310720/1058841


{{Optimal ET sequence|legend=1| 270, 684h, 954h, 1224 }}
[[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104


Badness: 0.013104
{{Optimal ET sequence|legend=1| 26, 244, 270, 836, 1106, 1376, 2482 }}


=== Semiennealimmal ===
[[Badness]]: 0.040236
Semiennealimmal tempers out [[4000/3993]], and uses a ~140/121 semifourth generator. Notably, however, two generator steps do not reach ~4/3, despite that the name may suggest so. In fact, it splits the generator of ennealimmal into three.  


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 4000/3993, 4375/4374
Comma list: 3025/3024, 4375/4374, 5767168/5764801


Mapping: [{{val| 9 3 4 14 18 }}, {{val| 0 6 9 6 7 }}]
Mapping: {{mapping| 2 21 36 5 2 | 0 -29 -51 1 8 }}


Mapping generators: ~27/25, ~140/121
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103


Optimal tuning (POTE): ~27/25 = 1\9, ~140/121 = 250.3367
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836, 1106 }}


{{Optimal ET sequence|legend=1| 72, 369, 441 }}
Badness: 0.016188


Badness: 0.034196
=== 13-limit ===
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374
Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360


Mapping: [{{val| 9 3 4 14 18 -8 }}, {{val| 0 6 9 6 7 22 }}]
Mapping: {{mapping| 2 21 36 5 2 24 | 0 -29 -51 1 8 -27 }}


Optimal tuning (POTE): ~27/25 = 1\9, ~140/121 = 250.3375
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103


{{Optimal ET sequence|legend=1| 72, 297ef, 369f, 441 }}
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836f, 1106f }}


Badness: 0.026122
Badness: 0.021762


=== Quadraennealimmal ===
== Seniority ==
Subgroup: 2.3.5.7.11
{{See also| Very high accuracy temperaments #Senior }}


Comma list: 2401/2400, 4375/4374, 234375/234256
Aside from the ragisma, the seniority temperament (26 &amp; 145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ({{monzo| -17 62 -35 }}, quadla-sepquingu) is tempered out.


Mapping: [{{val| 9 1 1 12 -7 }}, {{val| 0 8 12 8 23 }}]
[[Subgroup]]: 2.3.5.7


Mapping generators: ~27/25, ~25/22
[[Comma list]]: 4375/4374, 201768035/201326592


Optimal tuning (POTE): ~27/25 = 1\9, ~25/22 = 221.0717
{{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }}


{{Optimal ET sequence|legend=1| 342, 1053, 1395, 1737, 4869dd, 6606cdd }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804


Badness: 0.021320
{{Optimal ET sequence|legend=1| 26, 145, 171, 1513d, 1684d, 1855d, 2026d, 2197d, 2368d, 2539d, 2710d }}


=== Trinealimmal ===
[[Badness]]: 0.044877
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 4375/4374, 2097152/2096325
=== Senator ===
 
The senator temperament (26 &amp; 145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.
Mapping: [{{val| 27 1 0 34 177 }}, {{val| 0 2 3 2 -4 }}]
 
Mapping generators: ~2744/2673, ~2352/1375
 
Optimal tuning (POTE): ~2744/2673 = 1\27, ~2352/1375 = 928.8000
 
{{Optimal ET sequence|legend=1| 27, 243, 270, 783, 1053, 1323 }}
 
Badness: 0.029812
 
=== Rhodium ===
{{Main|Rhodium}}
Rhodium splits the ennealimmal period in five parts and thereby features a period of 9 × 5 = 45, thus the name is given after the 45th element.


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 4375/4374, 117440512/117406179
Comma list: 441/440, 4375/4374, 65536/65219


Mapping: [{{val| 45 1 -1 56 226 }}, {{val| 0 2 3 2 -2 }}]
Mapping: {{mapping| 1 11 19 2 4 | 0 -35 -62 3 -2 }}


Mapping generators: ~3072/3025, ~55/32
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793


Optimal tuning (CTE): ~3072/3025 = 1\45, ~55/32 = 937.6658
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316e, 487ee }}


{{Optimal ET sequence|legend=1| 45, 225c, 270, 1125, 1395, 1665, 5265d }}
Badness: 0.092238
 
Badness: 0.0381


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 2401/2400, 4225/4224, 4375/4374, 6656/6655
Comma list: 364/363, 441/440, 2200/2197, 4375/4374


Mapping: [{{val| 45 1 -1 56 226 272 }}, {{val| 0 2 3 2 -2 -3 }}]
Mapping: {{mapping| 1 11 19 2 4 15 | 0 -35 -62 3 -2 -42 }}


Optimal tuning (CTE): ~66/65 = 1\45, ~55/32 = 937.657
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793


{{Optimal ET sequence|legend=1| 45, 270, 855, 1125, 1395, 1665, 3060d, 4725df }}
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}


Badness: 0.0226
Badness: 0.044662


== Supermajor ==
==== 17-limit ====
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of {{multival|37 46 75 -13 15 45}}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.
Subgroup: 2.3.5.7.11.13.17


Subgroup: 2.3.5.7
Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197


[[Comma list]]: 4375/4374, 52734375/52706752
Mapping: {{mapping| 1 11 19 2 4 15 17 | 0 -35 -62 3 -2 -42 -48 }}


[[Mapping]]: [{{val|1 15 19 30}}, {{val|0 -37 -46 -75}}]
Optimal tuning (POTE): ~77/64 = 322.793


{{Multival|legend=1|37 46 75 -13 15 45}}
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}


[[POTE generator]]: ~9/7 = 435.082
Badness: 0.026562


{{Optimal ET sequence|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }}
== Monzismic ==
: ''For the 5-limit version of this temperament, see [[Very high accuracy temperaments #Monzismic]].


[[Badness]]: 0.010836
The monzismic temperament (53 &amp; 612) tempers out the [[monzisma]], {{monzo| 54 -37 2 }}, and in the 7-limit, the [[nanisma]], {{monzo| 109 -67 0 -1 }}, as well as the ragisma, [[4375/4374]].  


=== Semisupermajor ===
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 35156250/35153041
[[Comma list]]: 4375/4374, {{monzo| -55 30 2 1 }}


Mapping: [{{val|2 30 38 60 41}}, {{val|0 -37 -46 -75 -47}}]
{{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }}


POTE generator: ~9/7 = 435.082
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207


{{Optimal ET sequence|legend=1| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}
{{Optimal ET sequence|legend=1| 53, , 559, 612, 1277, 1889 }}


Badness: 0.012773
[[Badness]]: 0.046569


== Enneadecal ==
=== Monzism ===
Enneadecal temperament tempers out the [[enneadeca]], {{monzo| -14 -19 19 }}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out [[703125/702464]], the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)<sup>1/3</sup>. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5- or 7-limit, and [[494edo]] shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning.
Subgroup: 2.3.5.7.11


[[Subgroup]]: 2.3.5.7
Comma list: 4375/4374, 41503/41472, 184549376/184528125


[[Comma list]]: 4375/4374, 703125/702464
Mapping: {{mapping| 1 2 10 -25 46 | 0 -2 -37 134 -205 }}


[[Mapping]]: [{{val| 19 0 14 -37 }}, {{val| 0 1 1 3 }}]
Optimal tuning (POTE): ~231/200 = 249.0193


{{Multival|legend=1| 19 19 57 -14 37 79 }}
{{Optimal ET sequence|legend=1| 53, 559, 612 }}


Mapping generators: ~28/27, ~3
Badness: 0.057083


[[Optimal tuning]] ([[CTE]]): ~3/2 = 701.9275 (~225/224 = 7.1907)
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Optimal ET sequence|legend=1| 19, , 152, 171, 665, 836, 1007, 2185, 3192c }}
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625


[[Badness]]: 0.010954
Mapping: {{mapping| 1 2 10 -25 46 23 | 0 -2 -37 134 -205 -93 }}


=== 11-limit ===
Optimal tuning (POTE): ~231/200 = 249.0199
Subgroup: 2.3.5.7.11


Comma list: 540/539, 4375/4374, 16384/16335
{{Optimal ET sequence|legend=1| 53, 559, 612 }}


Mapping: [{{val| 19 0 14 -37 126 }}, {{val| 0 1 1 3 -2 }}]
Badness: 0.053780


Optimal tuning (CTE): ~3/2 = 702.1483 (~225/224 = 7.4115)
== Semidimfourth ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimfourth]].''


{{Optimal ET sequence|legend=1| 19, 133d, 152, 323e, 475de, 627de }}
The semidimfourth temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.


Badness: 0.043734
[[Subgroup]]: 2.3.5.7


==== 13-limit ====
[[Comma list]]: 4375/4374, 235298/234375
Subgroup: 2.3.5.7.11.13


Comma list: 540/539, 625/624, 729/728, 2205/2197
[[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }}


Mapping: [{{val| 19 0 14 -37 126 -20 }}, {{val| 0 1 1 3 -2 3 }}]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456


Optimal tuning (CTE): ~3/2 = 701.9258 (~225/224 = 7.1890)
{{Optimal ET sequence|legend=1| 8d, 91, 99, 289, 388, 875, 1263d, 1651d }}


{{Optimal ET sequence|legend=1| 19, 133df, 152f, 323ef }}
[[Badness]]: 0.055249


Badness: 0.033545
=== Neusec ===
 
=== Hemienneadecal ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 234375/234256
Comma list: 3025/3024, 4375/4374, 235298/234375


Mapping: [{{val| 38 0 28 -74 11 }}, {{val| 0 1 1 3 2 }}]
Mapping: {{mapping| 2 11 15 19 15 | 0 -31 -41 -53 -32 }}


Mapping generators: ~55/54, ~3
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.547


Optimal tuning (CTE): ~3/2 = 701.9351 (~225/224 = 7.1983)
{{Optimal ET sequence|legend=1| 8d, 190, 388 }}


{{Optimal ET sequence|legend=1| 152, 342, 836, 1178, 2014, 3192ce, 5206ce }}
Badness: 0.059127


Badness: 0.009985
==== 13-limit ====
 
==== Hemienneadecalis ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256
Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374


Mapping: [{{val| 38 0 28 -74 11 -281 }}, {{val| 0 1 1 3 2 7 }}]
Mapping: {{mapping| 2 11 15 19 15 17 | 0 -31 -41 -53 -32 -38 }}


Optimal tuning (CTE): ~3/2 = 701.9955 (~225/224 = 7.2587)
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.545


{{Optimal ET sequence|legend=1| 152f, 342f, 494 }}
{{Optimal ET sequence|legend=1| 8d, 190, 198, 388 }}


Badness: 0.020782
Badness: 0.030941


==== Hemienneadec ====
== Acrokleismic ==
Subgroup: 2.3.5.7.11.13
[[Subgroup]]: 2.3.5.7


Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213
[[Comma list]]: 4375/4374, 2202927104/2197265625


Mapping: [{{val| 38 0 28 -74 11 502 }}, {{val| 0 1 1 3 2 -6 }}]
{{Mapping|legend=1| 1 10 11 27 | 0 -32 -33 -92 }}


Optimal tuning (CTE): ~3/2 = 701.9812 (~225/224 = 7.2444)
: mapping generators: ~2, ~6/5


{{Optimal ET sequence|legend=1| 152, 342, 494, 1330, 1824, 2318d }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557


Badness: 0.030391
{{Optimal ET sequence|legend=1| 19, …, 251, 270, 2449c, 2719c, 2989bc }}


==== Semihemienneadecal ====
[[Badness]]: 0.056184
Subgroup: 2.3.5.7.11.13


Comma list: 3025/3024, 4225/4224, 4375/4374, 78125/78078
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 38 1 29 -71 13 111 }}, {{val| 0 2 2 6 4 1 }}]
Comma list: 4375/4374, 41503/41472, 172032/171875


Mapping generators: ~55/54, ~429/250
Mapping: {{mapping| 1 10 11 27 -16 | 0 -32 -33 -92 74 }}


Optimal tuning (CTE): ~429/250 = 935.1789 (~144/143 = 12.1895)
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.558


{{Optimal ET sequence|legend=1| 190, 304d, 494, 684, 1178, 2850, 4028ce }}
{{Optimal ET sequence|legend=1| 19, 251, 270, 829, 1099, 1369, 1639 }}


Badness: 0.014694
Badness: 0.036878


=== Kalium ===
==== 13-limit ====
Named after the 19th element, potassium, and after an archaic variant of the element's name to resolve a name conflict. [[19/16]] can be used as a generator. Since it is enfactored in the 17-limit and lower, it makes no sense to name it for the lower subgroups.
Subgroup: 2.3.5.7.11.13


Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976


Comma list: 2500/2499, 3250/3249, 4225/4224, 4375/4374, 11016/11011, 57375/57344
Mapping: {{mapping| 1 10 11 27 -16 25 | 0 -32 -33 -92 74 -81 }}


Mapping: [{{val|19 3 17 -28 82 92 159 78}}, {{val|0 10 10 30 -6 -8 -30 1}}]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.557


Optimal tuning (CTE): ~28/27 = 1\19, ~6545/5928 = 171.244
{{Optimal ET sequence|legend=1| 19, 251, 270 }}


{{Optimal ET sequence|legend=1|855, 988, 1843}}
Badness: 0.026818


== Semidimi ==
=== Counteracro ===
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].''
Subgroup: 2.3.5.7.11


The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo|-12 -73 55}} and 7-limit 3955078125/3954653486, as well as 4375/4374.
Comma list: 4375/4374, 5632/5625, 117649/117612


Subgroup: 2.3.5.7
Mapping: {{mapping| 1 10 11 27 55 | 0 -32 -33 -92 -196 }}


[[Comma list]]: 4375/4374, 3955078125/3954653486
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.553


[[Mapping]]: [{{val|1 36 48 61}}, {{val|0 -55 -73 -93}}]
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }}


{{Multival|legend=1|55 73 93 -12 -7 11}}
Badness: 0.042572


[[POTE generator]]: ~35/27 = 449.1270
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Optimal ET sequence|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }}
Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374


[[Badness]]: 0.015075
Mapping: {{mapping| 1 10 11 27 55 25 | 0 -32 -33 -92 -196 -81 }}


== Brahmagupta ==
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.554
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo|47 -7 -7 -7}} = 140737488355328 / 140710042265625.


Subgroup: 2.3.5.7
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }}


[[Comma list]]: 4375/4374, 70368744177664/70338939985125
Badness: 0.026028


[[Mapping]]: [{{val|7 2 -8 53}}, {{val|0 3 8 -11}}]
== Quasithird ==
The quasithird temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}.


{{Multival|legend=1|21 56 -77 40 -181 -336}}
[[Subgroup]]: 2.3.5


[[POTE generator]]: ~27/20 = 519.716
[[Comma list]]: {{monzo| 55 -64 20 }}


{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 1106, 1547 }}
{{Mapping|legend=1| 4 0 -11 | 0 5 16 }}


[[Badness]]: 0.029122
: mapping generators: ~51200000/43046721, ~1594323/1280000


=== 11-limit ===
[[Optimal tuning]] ([[POTE]]): ~51200000/43046721, ~1594323/1280000 = 380.395
Subgroup: 2.3.5.7.11


Comma list: 4000/3993, 4375/4374, 131072/130977
{{Optimal ET sequence|legend=1| 60, 104c, 164, 224, 388, 612, 1612, 2224, 2836, 6284, 9120, 15404 }}


Mapping: [{{val|7 2 -8 53 3}}, {{val|0 3 8 -11 7}}]
[[Badness]]: 0.099519


POTE generator: ~27/20 = 519.704
=== 7-limit ===
[[Subgroup]]: 2.3.5.7


{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771ee }}
[[Comma list]]: 4375/4374, {{monzo| -60 29 0 5 }}


Badness: 0.052190
{{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }}


=== 13-limit ===
[[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388
Subgroup: 2.3.5.7.11.13


Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 1448, 2060 }}


Mapping: [{{val|7 2 -8 53 3 35}}, {{val|0 3 8 -11 7 -3}}]
[[Badness]]: 0.061813


POTE generator: ~27/20 = 519.706
=== 11-limit ===
Subgroup: 2.3.5.7.11


{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771eef }}
Comma list: 3025/3024, 4375/4374, 4296700485/4294967296


Badness: 0.023132
Mapping: {{mapping| 4 0 -11 48 43 | 0 5 16 -29 -23 }}


== Abigail ==
Optimal tuning (POTE): ~5103/4096 = 380.387 (or ~22/21 = 80.387)
Abigail temperament tempers out the [[pessoalisma]] in addition to the ragisma in the 7-limit. It was named by Gene Ward Smith after the birthday of First Lady Abigail Fillmore.<ref>https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_17927.html#17930: "I propose Abigail as a name, on the grounds 313/1798 is an excellent generator, and Abigail Fillmore, wife of Millard, was born on 3-13-1798 at least as Americans recon things."</ref>


Subgroup: 2.3.5.7
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448 }}


[[Comma list]]: 4375/4374, 2147483648/2144153025
Badness: 0.021125


[[Mapping]]: [{{val|2 7 13 -1}}, {{val|0 -11 -24 19}}]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


{{Multival|legend=1|22 48 -38 25 -122 -223}}
Comma list: 2200/2197, 3025/3024, 4096/4095, 4375/4374


[[POTE generator]]: ~6912/6125 = 208.899
Mapping: {{mapping| 4 0 -11 48 43 11 | 0 5 16 -29 -23 3 }}


{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }}
Optimal tuning (POTE): ~81/65 = 380.385 (or ~22/21 = 80.385)


[[Badness]]: 0.037000
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }}


=== 11-limit ===
Badness: 0.029501
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 131072/130977
== Deca ==
: ''For 5-limit version of this temperament, see [[10th-octave temperaments #Neon]].''


Mapping: [{{val|2 7 13 -1 1}}, {{val|0 -11 -24 19 17}}]
Deca temperament has a period of 1/10 octave and tempers out the [[linus comma]], {{monzo| 11 -10 -10 10 }}, neon comma {{monzo| 21 60 -50 }} and {{monzo| 12 -3 -14 9 }} = 165288374272/164794921875 (satritrizo-asepbigu).


POTE generator: ~1155/1024 = 208.901
[[Subgroup]]: 2.3.5.7


{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764 }}
[[Comma list]]: 4375/4374, 165288374272/164794921875


Badness: 0.012860
{{Mapping|legend=1| 10 4 9 2 | 0 5 6 11 }}


=== 13-limit ===
: mapping generators: ~15/14, ~6/5
Subgroup: 2.3.5.7.11.13


Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095
[[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577


Mapping: [{{val|2 7 13 -1 1 -2}}, {{val|0 -11 -24 19 17 27}}]
{{Optimal ET sequence|legend=1| 80, 190, 270, 1270, 1540, 1810, 2080 }}


POTE generator: ~44/39 = 208.903
[[Badness]]: 0.080637


{{Optimal ET sequence|legend=1| 46, 178, 224, 270, 494, 764, 1258 }}
Badness (Sintel): 2.041


Badness: 0.008856
=== 11-limit ===
Subgroup: 2.3.5.7.11


== Gamera ==
Comma list: 3025/3024, 4375/4374, 391314/390625
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 589824/588245
Mapping: {{mapping| 10 4 9 2 18 | 0 5 6 11 7 }}


[[Mapping]]: [{{val| 1 6 10 3 }}, {{val| 0 -23 -40 -1 }}]
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.582


Mapping generators: ~2, ~8/7
{{Optimal ET sequence|legend=1| 80, 190, 270, 1000, 1270, 1540e, 1810e }}


{{Multival|legend=1| 23 40 1 10 -63 -110 }}
Badness: 0.024329


[[POTE generator]] ~8/7 = 230.336
Badness (Sintel): 0.804


{{Optimal ET sequence|legend=1| 26, 73, 99, 224, 323, 422, 745d }}
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


[[Badness]]: 0.037648
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374


=== Hemigamera ===
Mapping: {{mapping| 10 4 9 2 18 37 | 0 5 6 11 7 0 }}
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 589824/588245
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.602 (~40/39 = 44.398)


Mapping: [{{val| 2 12 20 6 5 }}, {{val| 0 -23 -40 -1 5 }}]
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}


Mapping generators: ~99/70, ~8/7
Badness: 0.016810


POTE generator: ~8/7 = 230.3370
Badness (Sintel): 0.695


{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646, 1068d }}
=== no-17's 19-limit ===
Subgroup: 2.3.5.7.11.13.19


Badness: 0.040955
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374, 1521/1520


==== 13-limit ====
Mapping: {{mapping| 10 4 9 2 18 37 33 | 0 5 6 11 7 0 4 }}
Subgroup: 2.3.5.7.11.13


Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024
Optimal tuning (CTE): ~15/14 = 1\10, ~6/5 = 315.581 (~39/38 = 44.419)


Mapping: [{{val| 2 12 20 6 5 17 }}, {{val| 0 -23 -40 -1 5 -25 }}]
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}


POTE generator: ~8/7 = 230.3373
Badness (Sintel): 0.556


{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646f, 1068df }}
== Keenanose ==
Keenanose is named for the fact that it uses [[385/384]], the keenanisma, as the generator.


Badness: 0.020416
[[Subgroup]]: 2.3.5.7


=== Semigamera ===
[[Comma list]]: 4375/4374, {{monzo| -56 1 -8 26 }}
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 14641/14580, 15488/15435
{{Mapping|legend=1| 1 2 3 3 | 0 -112 -183 -52 }}


Mapping: [{{val| 1 6 10 3 12 }}, {{val| 0 -46 -80 -2 -89 }}]
: mapping generators: ~2, ~{{monzo| 21 3 1 -10 }}


Mapping generators: ~2, ~77/72
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~{{monzo| 21 3 1 -10 }} = 4.4465


POTE generator: ~77/72 = 115.1642
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 2159, 4048, 18081cd }}


{{Optimal ET sequence|legend=1| 73, 125, 198, 323, 521 }}
[[Badness]]: 0.0858


Badness: 0.078
=== 11-limit ===
Subgroup: 2.3.5.7.11


==== 13-limit ====
Comma list: 4375/4374, 117649/117612, 67110351/67108864
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580
Mapping: {{mapping| 1 2 3 3 3 | 0 -112 -183 -52 124 }}


Mapping: [{{val| 1 6 10 3 12 18 }}, {{val| 0 -46 -80 -2 -89 -149 }}]
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4465


POTE generator: ~77/72 = 115.1628
{{Optimal ET sequence|legend=1| 270, 1349, 1619, 1889, 2159, 11065, 13224 }}


{{Optimal ET sequence|legend=1| 73f, 125f, 198, 323, 521 }}
Badness: 0.0308


Badness: 0.044
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


== Orga ==
Comma list: 4225/4224, 4375/4374, 6656/6655, 117649/117612
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 54975581388800/54936068900769
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -112 -183 -52 124 189 }}


[[Mapping]]: [{{val|2 21 36 5}}, {{val|0 -29 -51 1}}]
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4466


[[Wedgie]]: {{multival|58 102 -2 27 -166 -291}}
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 4048 }}


[[POTE generator]]: ~8/7 = 231.104
Badness: 0.0213


{{Optimal ET sequence|legend=1| 26, 244, 270, 836, 1106, 1376, 2482 }}
== Aluminium ==
Aluminium is named after the 13th element, and tempers out the {{monzo| 92 -39 -13 }} comma which sets [[135/128]] interval to be equal to 1/13th of the octave.


[[Badness]]: 0.040236
[[Subgroup]]: 2.3.5


=== 11-limit ===
[[Comma list]]: {{monzo| 92 -39 -13 }}
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 5767168/5764801
[[Mapping]]: {{mapping| 13 0 92 | 0 1 -3 }}


Mapping: [{{val|2 21 36 5 2}}, {{val|0 -29 -51 1 8}}]
: mapping generators: ~135/128, ~3


POTE generator: ~8/7 = 231.103
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 701.9897


{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836, 1106 }}
{{Optimal ET sequence|legend=1| 65, 299, 364, 429, 494, 559, 1053, 1612, 5889, 7501, 9113, 10725, 23062bc, 33787bcc, 44512bbcc }}


Badness: 0.016188
[[Badness]]: 0.123


=== 13-limit ===
=== 7-limit ===
Subgroup: 2.3.5.7.11.13
[[Subgroup]]: 2.3.5.7


Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360
[[Comma list]]: 4375/4374, {{monzo| 92 -39 -13 }}


Mapping: [{{val|2 21 36 5 2 24}}, {{val|0 -29 -51 1 8 -27}}]
[[Mapping]]: {{mapping| 13 0 92 -355 | 0 1 -3 19 }}


POTE generator: ~8/7 = 231.103
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 702.0024


{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836f, 1106f }}
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 8788, 10335, 11882, 13429b, 14976b }}


Badness: 0.021762
[[Badness]]: 0.126


== Chlorine ==
=== 11-limit ===
The name of chlorine temperament comes from Chlorine, the 17th element.
Subgroup: 2.3.5.7.11


Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, {{monzo|-52 -17 34}}, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&amp;323 temperament, which tempers out {{monzo|-49 4 22 -3}} as well as the ragisma. Not only the semitwelfth, but also the ~5/4 can be used as a generator.
Comma list: 4375/4374, 234375/234256, 2097152/2096325


Subgroup: 2.3.5
Mapping: {{mapping| 13 0 92 -355 148 | 0 1 -3 19 -5 }}


[[Comma]]: {{monzo| -52 -17 34 }}
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0042


[[Mapping]]: [{{val| 17 0 26 }}, {{val| 0 2 1 }}]
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 3588e, 5135e }}


Mapping generators: ~25/24, ~{{monzo| 26 9 -17 }}
Badness: 0.0421


[[POTE generator]]: ~{{monzo| 26 9 -17 }} = 950.9746
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


{{Optimal ET sequence|legend=1| 34, 153, 187, 221, 255, 289, 323, 612, 3349, 3961, 4573, 5185, 5797 }}
Comma list: 4096/4095, 4375/4374, 6656/6655, 78125/78078


[[Badness]]: 0.077072
Mapping: {{mapping| 13 0 92 -355 148 419 | 0 1 -3 19 -5 -18 }}


=== 7-limit ===
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0099
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 193119049072265625/193091834023510016
{{Optimal ET sequence|legend=1| 494, 1547, 2041, 4576def }}


[[Mapping]]: [{{val| 17 0 26 -87 }}, {{val| 0 2 1 10 }}]
Badness: 0.0286


{{Multival|legend=1| 34 17 170 -52 174 347 }}
== Countritonic ==
: ''For the 5-limit version of this temperament, see [[Schismic–Mercator equivalence continuum #Countritonic]].''


[[POTE generator]]: ~822083584/474609375 = 950.9995
Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit.  


{{Optimal ET sequence|legend=1| 289, 323, 612, 935, 1547 }}
[[Subgroup]]: 2.3.5.7


[[Badness]]: 0.041658
[[Comma list]]: 4375/4374, 68719476736/68356598625


=== 11-limit ===
{{Mapping|legend=1| 1 6 19 -33 | 0 -9 -34 73 }}
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 41503/41472, 1879453125/1879048192
: mapping generators: ~2, ~45927/32768


Mapping: [{{val| 17 0 26 -87 207 }}, {{val| 0 2 1 10 -11 }}]
[[Optimal tuning]] (CTE): ~2 = 1\1, ~45927/32768 = 588.6216


POTE generators: ~822083584/474609375 = 950.9749
{{Optimal ET sequence|legend=1| 53, 210d, 263, 316, 369, 422, 791, 1213cd, 2004bcdd }}


{{Optimal ET sequence|legend=1| 289, 323, 612 }}
[[Badness]]: 0.133


Badness: 0.063706
=== 11-limit ===
Subgroup: 2.3.5.7.11


== Seniority ==
Comma list: 4375/4374, 5632/5625, 2621440/2614689
{{see also|Very high accuracy temperaments #Senior}}


Aside from the ragisma, the seniority temperament (26&amp;145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ({{monzo|-17 62 -35}}, quadla-sepquingu) is tempered out.
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 }}


Subgroup: 2.3.5.7
Optimal tuning (CTE): ~2 = 1\1, ~539/384 = 588.6258


[[Comma list]]: 4375/4374, 201768035/201326592
{{Optimal ET sequence|legend=1| 53, 316e, 369, 422, 791e, 1213cde }}


[[Mapping]]: [{{val|1 11 19 2}}, {{val|0 -35 -62 3}}]
Badness: 0.0707


[[Wedgie]]: {{multival|35 62 -3 17 -103 -181}}
=== 13-limit ===
Subgroup: 2.3.5.7.11


[[POTE generator]]: ~3087/2560 = 322.804
Comma list: 2080/2079, 2200/2197, 4375/4374, 5632/5625


{{Optimal ET sequence|legend=1| 26, 145, 171, 1513d, 1684d, 1855d, 2026d, 2197d, 2368d, 2539d, 2710d }}
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 -74 }}


[[Badness]]: 0.044877
Optimal tuning (CTE): ~2 = 1\1, ~128/91 = 588.6277


=== Senator ===
{{Optimal ET sequence|legend=1| 53, 316ef, 369f, 422, 1213cdeff, 1635bcdefff }}
The senator temperament (26&amp;145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.


Subgroup: 2.3.5.7.11
Badness: 0.0366


Comma list: 441/440, 4375/4374, 65536/65219
== Quatracot ==
{{See also| Stratosphere }}


Mapping: [{{val|1 11 19 2 4}}, {{val|0 -35 -62 3 -2}}]
[[Subgroup]]: 2.3.5.7


POTE generator: ~77/64 = 322.793
[[Comma list]]: 4375/4374, {{monzo| -32 5 14 -3 }}


{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316e, 487ee }}
{{Mapping|legend=1| 2 7 7 23 | 0 -13 -8 -59 }}


Badness: 0.092238
: mapping generators: ~2278125/1605632, ~448/405


==== 13-limit ====
[[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805
Subgroup: 2.3.5.7.11.13


Comma list: 364/363, 441/440, 2200/2197, 4375/4374
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c, 1690bcc }}


Mapping: [{{val|1 11 19 2 4 15}}, {{val|0 -35 -62 3 -2 -42}}]
[[Badness]]: 0.175982


POTE generator: ~77/64 = 322.793
=== 11-limit ===
Subgroup: 2.3.5.7.11


{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}
Comma list: 3025/3024, 4375/4374, 1265625/1261568


Badness: 0.044662
Mapping: {{mapping| 2 7 7 23 19 | 0 -13 -8 -59 -41 }}


==== 17-limit ====
Optimal tuning (POTE): ~99/70 = 1\2, ~448/405 = 176.806
Subgroup: 2.3.5.7.11.13.17
 
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c }}
 
Badness: 0.041043


Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Mapping: [{{val|1 11 19 2 4 15 17}}, {{val|0 -35 -62 3 -2 -42 -48}}]
Comma list: 625/624, 729/728, 1575/1573, 2200/2197


POTE generator: ~77/64 = 322.793
Mapping: {{mapping| 2 7 7 23 19 13 | 0 -13 -8 -59 -41 -19 }}


{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}
Optimal tuning (POTE): ~99/70 = 1\2, ~195/176 = 176.804


Badness: 0.026562
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1690bcc, 2328bccde }}


== Monzismic ==
Badness: 0.022643
{{See also| Very high accuracy temperaments #Monzismic }}


The ''monzismic'' temperament (53&amp;612) tempers out the [[monzisma]], {{monzo| 54 -37 2 }}, and in the 7-limit, the [[nanisma]], {{monzo| 109 -67 0 -1 }}, as well as the ragisma, [[4375/4374]].  
== Moulin ==
Moulin has a generator of 22/13, and it is named after the ''Law & Order: Special Victims Unit'' episode Season 22, Episode 13. "Trick-Rolled At The Moulin". It can be described as the 494 & 1619 temperament.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, {{monzo| -55 30 2 1 }}
[[Comma list]]: 4375/4374, {{monzo| -88 2 45 -7 }}


[[Mapping]]: [{{val| 1 2 10 -25 }}, {{val| 0 -2 -37 134 }}]
{{Mapping|legend=1| 1 57 38 248 | 0 -73 -47 -323 }}


{{Multival|legend=1| 2 37 -134 54 -218 -415 }}
: mapping generators: ~2, ~6422528/3796875


[[Optimal tuning]] ([[POTE]]): ~{{monzo| -27 11 3 1 }} = 249.0207
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6422528/3796875 = 910.9323


{{Optimal ET sequence|legend=1| 53, , 559, 612, 1277, 1889 }}
{{Optimal ET sequence|legend=1| 494, 1125, 1619 }}


[[Badness]]: 0.046569
[[Badness]]: 0.234


=== Monzism ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 41503/41472, 184549376/184528125
Comma list: 4375/4374, 759375/758912, 100663296/100656875
 
Mapping: {{mapping| 1 57 38 248 -14 | 0 -73 -47 -323 23 }}


Mapping: [{{val| 1 2 10 -25 46 }}, {{val| 0 -2 -37 134 -205 }}]
Optimal tuning (CTE): ~2 = 1\1, ~1024/605 = 910.9323


Optimal tuning (POTE): ~231/200 = 249.0193
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}


{{Optimal ET sequence|legend=1| 53, 559, 612 }}
Badness: 0.0678


Badness: 0.057083
=== 13-limit ===
Since 11/8 is within 23 generators, the 25 tone MOS (4L 21s) of this temperament contains the 8:11:13 triad.


==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625
Comma list: 4225/4224, 4375/4374, 6656/6655, 78125/78078


Mapping: [{{val| 1 2 10 -25 46 23 }}, {{val| 0 -2 -37 134 -205 -93 }}]
Mapping: {{mapping| 1 57 38 248 -14 -13 | 0 -73 -47 -323 23 22 }}


Optimal tuning (POTE): ~231/200 = 249.0199
Optimal tuning (CTE): ~2 = 1\1, ~22/13 = 910.9323


{{Optimal ET sequence|legend=1| 53, 559, 612 }}
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}


Badness: 0.053780
Badness: 0.0271


== Semidimfourth ==
== Palladium ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimfourth]].''
: ''For the 5-limit version of this temperament, see [[46th-octave temperaments]]''.


The '''semidimfourth''' temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.
The name of the ''palladium'' temperament comes from palladium, the 46th element. Palladium has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo| -39 92 -46 }}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46 &amp; 414 temperament, which tempers out {{monzo| -51 8 2 12 }} as well as the ragisma.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 235298/234375
[[Comma list]]: 4375/4374, {{monzo| -51 8 2 12 }}


[[Mapping]]: [{{val|1 21 28 36}}, {{val|0 -31 -41 -53}}]
{{Mapping|legend=1| 46 0 -39 202 | 0 1 2 -1 }}


[[Wedgie]]: {{multival|31 41 53 -7 -3 8}}
: mapping generators: ~83349/81920, ~3


[[POTE generator]]: ~35/27 = 448.456
[[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074


{{Optimal ET sequence|legend=1| 8d, 91, 99, 289, 388, 875, 1263d, 1651d }}
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874d }}


[[Badness]]: 0.055249
[[Badness]]: 0.308505


=== Neusec ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 235298/234375
Comma list: 3025/3024, 4375/4374, 134775333/134217728


Mapping: [{{val|2 11 15 19 15}}, {{val|0 -31 -41 -53 -32}}]
Mapping: {{mapping| 46 0 -39 202 232 | 0 1 2 -1 -1 }}


POTE generator: ~12/11 = 151.547
Optimal tuning (POTE): ~8192/8085 = 1\46, ~3/2 = 701.5951


{{Optimal ET sequence|legend=1| 8d, 190, 388 }}
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de }}


Badness: 0.059127
Badness: 0.073783


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364


Mapping: [{{val|2 11 15 19 15 17}}, {{val|0 -31 -41 -53 -32 -38}}]
Mapping: {{mapping| 46 0 -39 202 232 316 | 0 1 2 -1 -1 -2 }}


POTE generator: ~12/11 = 151.545
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6419


{{Optimal ET sequence|legend=1| 8d, 190, 198, 388 }}
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334de }}


Badness: 0.030941
Badness: 0.040751


== Acrokleismic ==
=== 17-limit ===
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7.11.13.17


[[Comma list]]: 4375/4374, 2202927104/2197265625
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224


[[Mapping]]: [{{val|1 10 11 27}}, {{val|0 -32 -33 -92}}]
Mapping: {{mapping| 46 0 -39 202 232 316 188 | 0 1 2 -1 -1 -2 0 }}


[[Wedgie]]: {{multival|32 33 92 -22 56 121}}
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6425


[[POTE generator]]: ~6/5 = 315.557
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334deg }}


{{Optimal ET sequence|legend=1| 19, 251, 270 }}
Badness: 0.022441


[[Badness]]: 0.056184
== Oviminor ==
{{See also| Syntonic–kleismic equivalence continuum }}


=== 11-limit ===
Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past [[egads]], though it is less accurate.  
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 41503/41472, 172032/171875
[[Subgroup]]: 2.3.5.7


Mapping: [{{val|1 10 11 27 -16}}, {{val|0 -32 -33 -92 74}}]
[[Comma list]]: 4375/4374, {{monzo| -100 53 48 -34 }}


POTE generator: ~6/5 = 315.558
{{Mapping|legend=1| 1 50 51 147 | 0 -184 -185 -548 }}


{{Optimal ET sequence|legend=1| 19, 251, 270, 829, 1099, 1369, 1639 }}
: mapping generators: ~2, ~6/5


Badness: 0.036878
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6/5 = 315.7501


==== 13-limit ====
{{Optimal ET sequence|legend=1| 19, …, 1600, 1619, 4838, 6457c }}
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976
[[Badness]]: 0.582


Mapping: [{{val|1 10 11 27 -16 25}}, {{val|0 -32 -33 -92 74 -81}}]
== Octoid ==
''For the 5-limit temperament, see [[8th-octave temperaments#Octoid (5-limit)]].''


POTE generator: ~6/5 = 315.557
The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.


{{Optimal ET sequence|legend=1| 19, 251, 270 }}
[[Subgroup]]: 2.3.5.7


Badness: 0.026818
[[Comma list]]: 4375/4374, 16875/16807
 
=== Counteracro ===
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 5632/5625, 117649/117612
{{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }}


Mapping: [{{val|1 10 11 27 55}}, {{val|0 -32 -33 -92 -196}}]
: mapping generators: ~49/45, ~7/5


POTE generator: ~6/5 = 315.553
[[Optimal tuning]] ([[POTE]]): ~49/45 = 1\8, ~7/5 = 583.940


{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }}
[[Tuning ranges]]:
* 7-odd-limit [[diamond monotone]]: ~7/5 = [578.571, 600.000] (27\56 to 4\8)
* 9-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64 to 43\88)
* 7-odd-limit [[diamond tradeoff]]: ~7/5 = [582.512, 584.359]
* 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]


Badness: 0.042572
{{Optimal ET sequence|legend=1| 8d, 72, 152, 224 }}


==== 13-limit ====
[[Badness]]: 0.042670
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374
Scales: [[octoid72]], [[octoid80]]


Mapping: [{{val|1 10 11 27 55 25}}, {{val|0 -32 -33 -92 -196 -81}}]
=== 11-limit ===
The [[11-limit]] is the last place where all the extensions of octoid shown here agree in the mappings of primes. [[80edo]] is an alternative tuning for octoid in the 11-limit; though [[72edo]] does better for minimaxing the damage on the [[11-odd-limit]], 80edo damages prime 7 in favor of practically-just [[17/16]]'s, [[11/10]]'s and [[9/7]]'s. In higher limits, if one wants to use 80edo as the tuning, one must use octopus — not octoid — as 80edo doesn't temper 324/323, 375/374, 495/494, 625/624, 715/714 or 729/728.


POTE generator: ~6/5 = 315.554
Subgroup: 2.3.5.7.11


{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }}
Comma list: 540/539, 1375/1372, 4000/3993


Badness: 0.026028
Mapping: {{mapping| 8 1 3 3 16 | 0 3 4 5 3 }}


== Quasithird ==
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.962
The '''quasithird''' temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}.


Subgroup: 2.3.5
Tuning ranges:  
* 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
* 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]


[[Comma]]: {{monzo| 55 -64 20 }}
{{Optimal ET sequence|legend=1| 72, 152, 224 }}


[[Mapping]]: [{{val| 4 0 -11 }}, {{val| 0 5 16 }}]
Badness: 0.014097


Mapping generators: ~51200000/43046721, ~1594323/1280000
Scales: [[octoid72]], [[octoid80]]


[[POTE generator]]: ~1594323/1280000 = 380.395
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Optimal ET sequence|legend=1| 60, 104c, 164, 224, 388, 612, 1612, 2224, 2836, 6284, 9120, 15404 }}
Comma list: 540/539, 625/624, 729/728, 1375/1372


[[Badness]]: 0.099519
Mapping: {{mapping| 8 1 3 3 16 -21 | 0 3 4 5 3 13 }}


=== 7-limit ===
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.905
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 1153470752371588581/1152921504606846976
{{Optimal ET sequence|legend=1| 72, 152f, 224 }}


[[Mapping]]: [{{val| 4 0 -11 48 }}, {{val| 0 5 16 -29 }}]
Badness: 0.015274


{{Multival|legend=1| 20 64 -116 55 -240 -449 }}
Scales: [[octoid72]], [[octoid80]]


[[POTE generator]]: ~5103/4096 = 380.388
; Music
* ''Dreyfus'' (archived 2010) by [[Gene Ward Smith]] – [https://soundcloud.com/genewardsmith/genewardsmith-dreyfus SoundCloud] | [https://www.archive.org/details/Dreyfus details] | [https://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play] – octoid[72] in 224edo tuning


{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 1448, 2060 }}
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


[[Badness]]: 0.061813
Comma list: 375/374, 540/539, 625/624, 715/714, 729/728


=== 11-limit ===
Mapping: {{mapping| 8 1 3 3 16 -21 -14 | 0 3 4 5 3 13 12 }}
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 4296700485/4294967296
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.842


Mapping: [{{val| 4 0 -11 48 43 }}, {{val| 0 5 16 -29 -23 }}]
{{Optimal ET sequence|legend=1| 72, 152fg, 224, 296, 520g }}


POTE generator: ~5103/4096 = 380.387 (or ~22/21 = 80.387)
Badness: 0.014304


{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448 }}
Scales: [[octoid72]], [[octoid80]]


Badness: 0.021125
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


=== 13-limit ===
Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714
Subgroup: 2.3.5.7.11.13


Comma list: 2200/2197, 3025/3024, 4096/4095, 4375/4374
Mapping: {{mapping| 8 1 3 3 16 -21 -14 34 | 0 3 4 5 3 13 12 0 }}


Mapping: [{{val| 4 0 -11 48 43 11 }}, {{val| 0 5 16 -29 -23 3 }}]
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.932


POTE generator: ~81/65 = 380.385 (or ~22/21 = 80.385)
{{Optimal ET sequence|legend=1| 72, 152fg, 224 }}


{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }}
Badness: 0.016036


Badness: 0.029501
Scales: [[octoid72]], [[octoid80]]


== Deca ==
==== Octopus ====
A reasonable alternative tuning of octopus not shown here which works well for 23-limit harmony (and beyond) is [[80edo]], which has a strong sharp tendency that can be thought of as matching the sharpness of mapping [[19/16]] to 1\4 = 300{{cent}}.


: ''For 5-limit version of this temperament, see [[10th-octave temperaments#Neon]].''
Subgroup: 2.3.5.7.11.13


Deca temperament has a period of 1/10 octave and tempers out the [[15/14 equal-step tuning|linus comma]], {{monzo| 11 -10 -10 10 }}, neon comma {{monzo|21 60 -50}} and {{monzo| 12 -3 -14 9 }} = 165288374272/164794921875 (satritrizo-asepbigu).
Comma list: 169/168, 325/324, 364/363, 540/539


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 8 1 3 3 16 14 | 0 3 4 5 3 4 }}


[[Comma list]]: 4375/4374, 165288374272/164794921875
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.892


[[Mapping]]: [{{val| 10 4 9 2 }}, {{val| 0 5 6 11 }}]
{{Optimal ET sequence|legend=1| 72, 152, 224f }}


{{Multival|legend=1| 50 60 110 -21 34 87 }}
Badness: 0.021679


[[POTE generator]]: ~6/5 = 315.577
Scales: [[octoid72]], [[octoid80]]


{{Optimal ET sequence|legend=1| 80, 190, 270, 1270, 1540, 1810, 2080 }}
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


[[Badness]]: 0.080637
Comma list: 169/168, 221/220, 289/288, 325/324, 540/539


=== 11-limit ===
Mapping: {{mapping| 8 1 3 3 16 14 21 | 0 3 4 5 3 4 3 }}
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 391314/390625
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.811


Mapping: [{{val| 10 4 9 2 18 }}, {{val| 0 5 6 11 7 }}]
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 296ffg }}


POTE generator: ~6/5 = 315.582
Badness: 0.015614


{{Optimal ET sequence|legend=1| 80, 190, 270, 1000, 1270, 1540e, 1810e }}
Scales: [[Octoid72]], [[Octoid80]]


Badness: 0.024329
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


=== 13-limit ===
Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399
Subgroup: 2.3.5.7.11.13


Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374
Mapping: {{mapping| 8 1 3 3 16 14 21 34 | 0 3 4 5 3 4 3 0 }}


Mapping: [{{val| 10 4 9 2 18 37 }}, {{val| 0 5 6 11 7 0 }}]
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 584.064


POTE generator: ~6/5 = 315.602
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 376ffgh }}


{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}
Badness: 0.016321


Badness: 0.016810
Scales: [[Octoid72]], [[Octoid80]]


== Keenanose ==
==== Hexadecoid ====
Keenanose is named for the fact that it uses [[385/384]], the keenanisma, as the generator.
{{ See also | 16th-octave temperaments }}


[[Subgroup]]: 2.3.5.7
Hexadecoid (80 &amp; 144) has a period of 1/16 octave and tempers out 4225/4224.


[[Comma list]]: 4375/4374, {{monzo| -56 1 -8 26 }}
Subgroup: 2.3.5.7.11.13


[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -112 -183 -52 }}]
Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224


[[Optimal tuning]] ([[CTE]]): ~283115520/282475249 = 4.4465
Mapping: {{mapping| 16 2 6 6 32 67 | 0 3 4 5 3 -1 }}


{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 2159, 4048, 18081cd }}
: mapping generators: ~448/429, ~7/5


[[Badness]]: 0.0858
Optimal tuning (POTE): ~448/429 = 1\16, ~13/8 = 841.015


=== 11-limit ===
{{Optimal ET sequence|legend=1| 80, 144, 224 }}
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 117649/117612, 67110351/67108864
Badness: 0.030818


Mapping: [{{val| 1 2 3 3 3 }},  {{val| 0 -112 -183 -52 124 }}]
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


Optimal tuning (CTE): ~385/384 = 4.4465
Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224


{{Optimal ET sequence|legend=1| 270, 1349, 1619, 1889, 2159, 11065, 13224 }}
Mapping: {{mapping| 16 2 6 6 32 67 81 | 0 3 4 5 3 -1 -2 }}


Badness: 0.0308
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.932
 
{{Optimal ET sequence|legend=1| 80, 144, 224, 528dg }}
 
Badness: 0.028611
 
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


=== 13-limit ===
Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444
Subgroup: 2.3.5.7.11.13


Comma list: 4225/4224, 4375/4374, 6656/6655, 117649/117612
Mapping: {{mapping| 16 2 6 6 32 67 81 68 | 0 -3 -4 -5 -3 1 2 0 }}


Mapping: [{{val| 1 2 3 3 3 3 }}, {{val| 0 -112 -183 -52 124 189 }}]
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.896


Optimal tuning (CTE): ~385/384 = 4.4466
{{Optimal ET sequence|legend=1| 80, 144, 224, 304dh, 528dghh }}


{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 4048 }}
Badness: 0.023731


Badness: 0.0213
== Parakleismic ==
{{Main| Parakleismic }}


== Aluminium ==
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension adding 3136/3125 and 4375/4374, and 11-limit adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118.
''Aluminium'' is named after the 13th element, and tempers out the {{monzo| 92 -39 -13 }} comma which sets [[135/128]] interval to be equal to 1/13th of the octave.


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5


[[Comma list]]: {{monzo| 92 -39 -13 }}
[[Comma list]]: 1224440064/1220703125


[[Mapping]]: [{{val| 13 0 92 }}, {{val| 0 1 -3 }}]
{{Mapping|legend=1| 1 5 6 | 0 -13 -14 }}


Mapping generators: ~135/128, ~3
: mapping generators: ~2, ~6/5


[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 701.9897
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.240


{{Optimal ET sequence|legend=1| 65, 299, 364, 429, 494, 559, 1053, 1612, 5889, 7501, 9113, 10725, 23062bc, 33787bcc, 44512bbcc }}
{{Optimal ET sequence|legend=1| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }}


[[Badness]]: 0.123
[[Badness]]: 0.043279


=== 7-limit ===
=== 7-limit ===
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, {{monzo| 92 -39 -13 }}
[[Comma list]]: 3136/3125, 4375/4374
 
{{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }}


[[Mapping]]: [{{val| 13 0 92 -355 }}, {{val| 0 1 -3 19 }}]


[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 702.0024
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181


{{Optimal ET sequence|legend=1| 494, 1053, 1547, 8788, 10335, 11882, 13429b, 14976b }}
{{Optimal ET sequence|legend=1| 19, 80, 99, 217, 316, 415 }}


[[Badness]]: 0.126
[[Badness]]: 0.027431


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 234375/234256, 2097152/2096325
Comma list: 385/384, 3136/3125, 4375/4374


Mapping: [{{val| 13 0 92 -355 148 }}, {{val| 0 1 -3 19 -5 }}]
Mapping: {{mapping| 1 5 6 12 -6 | 0 -13 -14 -35 36 }}


Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0042
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.251


{{Optimal ET sequence|legend=1| 494, 1053, 1547, 3588e, 5135e }}
{{Optimal ET sequence|legend=1| 19, 99, 118 }}


Badness: 0.0421
Badness: 0.049711


=== 13-limit ===
=== Paralytic ===
Subgroup: 2.3.5.7.11.13
The ''paralytic'' temperament (118&amp;217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118 &amp; 217 tempers out 1001/1000, 1575/1573, and 3584/3575.


Comma list: 4096/4095, 4375/4374, 6656/6655, 78125/78078
Subgroup: 2.3.5.7.11


Mapping: [{{val| 13 0 92 -355 148 419 }}, {{val| 0 1 -3 19 -5 -18 }}]
Comma list: 441/440, 3136/3125, 4375/4374


Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0099
Mapping: {{mapping| 1 5 6 12 25 | 0 -13 -14 -35 -82 }}


{{Optimal ET sequence|legend=1| 494, 1547, 2041, 4576def }}
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.220


Badness: 0.0286
{{Optimal ET sequence|legend=1| 19e, 99e, 118, 217, 335, 552d, 887dd }}


== Countritonic ==
Badness: 0.036027
:''For the 5-limit version of this temperament, see [[Schismic-Mercator equivalence continuum #Countritonic]] and [[High badness temperaments #Countritonic]]


Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit.  
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Subgroup]]: 2.3.5.7
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374


[[Comma list]]: 4375/4374, 68719476736/68356598625
Mapping: {{mapping| 1 5 6 12 25 -16 | 0 -13 -14 -35 -82 75 }}


{{Mapping|legend=1| 1 6 19 -33 | 0 -9 -34 73 }}
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.214


: mapping generators: ~2, ~45927/32768
{{Optimal ET sequence|legend=1| 99e, 118, 217, 552d, 769de }}


[[Optimal tuning]] (CTE): ~2 = 1\1, ~45927/32768 = 588.6216
Badness: 0.044710


{{Optimal ET sequence|legend=1| 53, 210d, 263, 316, 369, 422, 791, 1213cd, 2004bcdd }}
==== Paraklein ====
The ''paraklein'' temperament (19e &amp; 118) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]].


[[Badness]]: 0.133
Subgroup: 2.3.5.7.11.13


=== 11-limit ===
Comma list: 196/195, 352/351, 625/624, 729/728
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 5632/5625, 2621440/2614689
Mapping: {{mapping| 1 5 6 12 25 15 | 0 -13 -14 -35 -82 -43 }}


Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 }}
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.225


Optimal tuning (CTE): ~2 = 1\1, ~539/384 = 588.6258
{{Optimal ET sequence|legend=1| 19e, 99ef, 118, 217ff, 335ff }}


{{Optimal ET sequence|legend=1| 53, 316e, 369, 422, 791e, 1213cde }}
Badness: 0.037618


Badness: 0.0707
=== Parkleismic ===
 
=== 13-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2080/2079, 2200/2197, 4375/4374, 5632/5625
Comma list: 176/175, 1375/1372, 2200/2187


Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 -74 }}
Mapping: {{mapping| 1 5 6 12 20 | 0 -13 -14 -35 -63 }}


Optimal tuning (CTE): ~2 = 1\1, ~128/91 = 588.6277
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.060


{{Optimal ET sequence|legend=1| 53, 316ef, 369f, 422, 1213cdeff, 1635bcdefff }}
{{Optimal ET sequence|legend=1| 19e, 80, 179, 259cd }}


Badness: 0.0366
Badness: 0.055884


== Quatracot ==
==== 13-limit ====
{{See also| Stratosphere }}
Subgroup: 2.3.5.7.11.13


Subgroup: 2.3.5.7
Comma list: 169/168, 176/175, 325/324, 1375/1372


[[Comma list]]: 4375/4374, 1483154296875/1473173782528
Mapping: {{mapping| 1 5 6 12 20 10 | 0 -13 -14 -35 -63 -24 }}


[[Mapping]]: [{{val| 2 7 7 23 }}, {{val| 0 -13 -8 -59 }}]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.075


{{Multival|legend=1| 26 16 118 -35 114 229 }}
{{Optimal ET sequence|legend=1| 19e, 80, 179 }}


[[POTE generator]]: ~448/405 = 176.805
Badness: 0.036559


{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c, 1690bcc }}
=== Paradigmic ===
Subgroup: 2.3.5.7.11


[[Badness]]: 0.175982
Comma list: 540/539, 896/891, 3136/3125


=== 11-limit ===
Mapping: {{mapping| 1 5 6 12 -1 | 0 -13 -14 -35 17 }}
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 1265625/1261568
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.096


Mapping: [{{val| 2 7 7 23 19 }}, {{val| 0 -13 -8 -59 -41 }}]
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}


POTE generator: ~448/405 = 176.806
Badness: 0.041720


{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c }}
==== 13-limit ====
 
Badness: 0.041043
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 625/624, 729/728, 1575/1573, 2200/2197
Comma list: 169/168, 325/324, 540/539, 832/825


Mapping: [{{val| 2 7 7 23 19 13 }}, {{val| 0 -13 -8 -59 -41 -19 }}]
Mapping: {{mapping| 1 5 6 12 -1 10 | 0 -13 -14 -35 17 -24 }}


POTE generator: ~195/176 = 176.804
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.080


{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1690bcc, 2328bccde }}
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}


Badness: 0.022643
Badness: 0.035781


== Moulin ==
=== Semiparakleismic ===
Moulin has a generator of 22/13, and it is named after the ''Law & Order: Special Victims Unit'' episode Season 22, Episode 13. "Trick-Rolled At The Moulin". It can be described as the 494 & 1619 temperament.
Subgroup: 2.3.5.7.11


[[Subgroup]]: 2.3.5.7
Comma list: 3025/3024, 3136/3125, 4375/4374


[[Comma list]]: 4375/4374, {{monzo| -88 2 45 -7 }}
Mapping: {{mapping| 2 10 12 24 19 | 0 -13 -14 -35 -23 }}


[[Mapping]]: [{{val| 1 57 38 248 }}, {{val| 0 -73 -47 -323 }}]
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.181


[[Optimal tuning]] ([[CTE]]): ~22/13 = 910.9323
{{Optimal ET sequence|legend=1| 80, 118, 198, 316, 514c, 830c }}


{{Optimal ET sequence|legend=1| 494, 1125, 1619 }}
Badness: 0.034208


[[Badness]]: 0.234
==== Semiparamint ====
This extension was named ''semiparakleismic'' in the earlier materials.  


=== 11-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 759375/758912, 100663296/100656875
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374


Mapping: [{{val| 1 57 38 248 -14 }}, {{val| 0 -73 -47 -323 23 }}]
Mapping: {{mapping| 2 10 12 24 19 -1 | 0 -13 -14 -35 -23 16 }}


Optimal tuning (CTE): ~22/13 = 910.9323
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.156


{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}
{{Optimal ET sequence|legend=1| 80, 118, 198 }}


Badness: 0.0678
Badness: 0.033775


=== 13-limit ===
==== Semiparawolf ====
Since 11/8 is within 23 generators, the 25 tone MOS (4L 21s) of this temperament contains the 8:11:13 triad.
This extension was named ''gentsemiparakleismic'' in the earlier materials.  


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 4225/4224, 4375/4374, 6656/6655, 78125/78078
Comma list: 169/168, 325/324, 364/363, 3136/3125
 
Mapping: {{mapping| 2 10 12 24 19 20 | 0 -13 -14 -35 -23 -24 }}


Mapping: [{{val| 1 57 38 248 -14 -13 }}, {{val| 0 -73 -47 -323 23 22 }}]
Optimal tuning (POTE): ~55/39 = 1\2, ~6/5 = 315.184


Optimal tuning (CTE): ~22/13 = 910.9323
{{Optimal ET sequence|legend=1| 80, 118f, 198f }}


{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}
Badness: 0.040467


Badness: 0.0271
== Counterkleismic ==
{{See also| High badness temperaments #Counterhanson}}


== Palladium ==
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo| -20 -24 25 }}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19 &amp; 224 temperament (''counterkleismic'', named by analogy to [[catakleismic]] and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).
: ''For the 5-limit version of this temperament, see [[46th-octave temperaments]]''.
The name of the ''palladium'' temperament comes from palladium, the 46th element. Palladium has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo| -39 92 -46 }}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&amp;414 temperament, which tempers out {{monzo| -51 8 2 12 }} as well as the ragisma.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 2270317133144025/2251799813685248
[[Comma list]]: 4375/4374, 158203125/157351936


[[Mapping]]: [{{val| 46 73 107 129 }}, {{val| 0 -1 -2 1 }}]
{{Mapping|legend=1| 1 20 20 61 | 0 -25 -24 -79 }}


{{Multival|legend=1| 46 92 -46 39 -202 -365 }}
: mapping generators: ~2, ~5/3


[[Optimal tuning]] ([[POTE]]): ~3/2 = 701.6074
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060


{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874d }}
{{Optimal ET sequence|legend=1| 19, 205, 224, 243, 467 }}


[[Badness]]: 0.308505
[[Badness]]: 0.090553


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 134775333/134217728
Comma list: 540/539, 4375/4374, 2097152/2096325


Mapping: [{{val| 46 73 107 129 159 }}, {{val| 0 -1 -2 1 1 }}]
Mapping: {{mapping| 1 20 20 61 -40 | 0 -25 -24 -79 59 }}


Optimal tuning (POTE): ~3/2 = 701.5951
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.071


{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de }}
{{Optimal ET sequence|legend=1| 19, 205, 224 }}


Badness: 0.073783
Badness: 0.070952


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364
Comma list: 540/539, 625/624, 729/728, 10985/10976


Mapping: [{{val| 46 73 107 129 159 170 }}, {{val| 0 -1 -2 1 1 2 }}]
Mapping: {{mapping| 1 20 20 61 -40 56 | 0 -25 -24 -79 59 -71 }}


Optimal tuning (POTE): ~3/2 = 701.6419
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.070


{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334de }}
{{Optimal ET sequence|legend=1| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }}


Badness: 0.040751
Badness: 0.033874


=== 17-limit ===
=== Counterlytic ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11


Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224
Comma list: 1375/1372, 4375/4374, 496125/495616


Mapping: [{{val| 46 73 107 129 159 170 188 }}, {{val| 0 -1 -2 1 1 2 0 }}]
Mapping: {{mapping| 1 20 20 61 125 | 0 -25 -24 -79 -165 }}


Optimal tuning (POTE): ~3/2 = 701.6425
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065


{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334deg }}
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}


Badness: 0.022441
Badness: 0.065400
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


== Oviminor ==
Comma list: 625/624, 729/728, 1375/1372, 10985/10976
{{See also| Syntonic-kleismic equivalence continuum }}


Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past [[egads]], though it is less accurate.
Mapping: {{mapping| 1 20 20 61 125 56 | 0 -25 -24 -79 -165 -71 }}


[[Subgroup]]: 2.3.5.7
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065


[[Comma list]]: 4375/4374, {{monzo| -100 53 48 -34 }}
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}


[[Mapping]]: {{val| 1 50 51 147 }}, {{val| 0 -184 -185 -548 }}
Badness: 0.029782


[[Optimal tuning]] ([[CTE]]): ~6/5 = 315.7501
== Quincy ==
[[Subgroup]]: 2.3.5.7


{{Optimal ET sequence|legend=1| 19, …, 1600, 1619, 4838, 6457c }}
[[Comma list]]: 4375/4374, 823543/819200


[[Badness]]: 0.582
{{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }}


== Octoid ==
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613
The '''octoid''' temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.


Subgroup: 2.3.5.7
{{Optimal ET sequence|legend=1| 72, 217, 289 }}


[[Comma list]]: 4375/4374, 16875/16807
[[Badness]]: 0.079657


[[Mapping]]: [{{val|8 1 3 3}}, {{val|0 3 4 5}}]
=== 11-limit ===
Subgroup: 2.3.5.7.11


[[Wedgie]]: {{multival|24 32 40 -5 -4 3}}
Comma list: 441/440, 4000/3993, 4375/4374


Mapping generators: ~49/45, ~7/5
Mapping: {{mapping| 1 2 3 3 4 | 0 -30 -49 -14 -39 }}


[[POTE generator]]: ~7/5 = 583.940
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.613


[[Tuning ranges]]:
{{Optimal ET sequence|legend=1| 72, 217, 289 }}
* 7-odd-limit [[diamond monotone]]: ~7/5 = [578.571, 600.000] (27\56 to 4\8)
* 9-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64 to 43\88)
* 7-odd-limit [[diamond tradeoff]]: ~7/5 = [582.512, 584.359]
* 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
* 7-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 584.359]
* 9-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]


{{Optimal ET sequence|legend=1| 8d, 72, 152, 224 }}
Badness: 0.030875


[[Badness]]: 0.042670
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Scales: [[Octoid72]], [[Octoid80]]
Comma list: 364/363, 441/440, 676/675, 4375/4374


=== 11-limit ===
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -30 -49 -14 -39 -94 }}
Subgroup: 2.3.5.7.11


Comma list: 540/539, 1375/1372, 4000/3993
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602


Mapping: [{{val|8 1 3 3 16}}, {{val|0 3 4 5 3}}]
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}


POTE generator: ~7/5 = 583.962
Badness: 0.023862


Tuning ranges:
=== 17-limit ===
* 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
Subgroup: 2.3.5.7.11.13.17
* 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
* 11-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]


{{Optimal ET sequence|legend=1| 72, 152, 224 }}
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155


Badness: 0.014097
Mapping: {{mapping| 1 2 3 3 4 5 5 | 0 -30 -49 -14 -39 -94 -66 }}


Scales: [[Octoid72]], [[Octoid80]]
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602


==== 13-limit ====
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}
Subgroup: 2.3.5.7.11.13


Comma list: 540/539, 625/624, 729/728, 1375/1372
Badness: 0.014741


Mapping: [{{val|8 1 3 3 16 -21}}, {{val|0 3 4 5 3 13}}]
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


POTE generator: ~7/5 = 583.905
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675


{{Optimal ET sequence|legend=1| 72, 152f, 224 }}
Mapping: {{mapping| 1 2 3 3 4 5 5 4 | 0 -30 -49 -14 -39 -94 -66 18 }}


Badness: 0.015274
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.594


Scales: [[Octoid72]], [[Octoid80]]
{{Optimal ET sequence|legend=1| 72, 145, 217 }}


; Music
Badness: 0.015197
* [https://www.archive.org/details/Dreyfus http://www.archive.org/details/Dreyfus] [https://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play]


===== 17-limit =====
== Sfourth ==
Subgroup: 2.3.5.7.11.13.17
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Sfourth]].''


Comma list: 375/374, 540/539, 625/624, 715/714, 729/728
[[Subgroup]]: 2.3.5.7


Mapping: [{{val|8 1 3 3 16 -21 -14}}, {{val|0 3 4 5 3 13 12}}]
[[Comma list]]: 4375/4374, 64827/64000


POTE generator: ~7/5 = 583.842
{{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }}


{{Optimal ET sequence|legend=1| 72, 152fg, 224, 296, 520g }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287


Badness: 0.014304
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}


Scales: [[Octoid72]], [[Octoid80]]
[[Badness]]: 0.123291


===== 19-limit =====
=== 11-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11


Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714
Comma list: 121/120, 441/440, 4375/4374


Mapping: [{{val|8 1 3 3 16 -21 -14 34}}, {{val|0 3 4 5 3 13 12 0}}]
Mapping: {{mapping| 1 2 3 3 4 | 0 -19 -31 -9 -25 }}


POTE generator: ~7/5 = 583.932
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.286


{{Optimal ET sequence|legend=1| 72, 152fg, 224 }}
{{Optimal ET sequence|legend=1| 45e, 46, 91e, 137de }}


Badness: 0.016036
Badness: 0.054098


Scales: [[Octoid72]], [[Octoid80]]
==== 13-limit ====
 
==== Octopus ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 325/324, 364/363, 540/539
Comma list: 121/120, 169/168, 325/324, 441/440


Mapping: [{{val|8 1 3 3 16 14}}, {{val|0 3 4 5 3 4}}]
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -19 -31 -9 -25 -14 }}


POTE generator: ~7/5 = 583.892
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.310


{{Optimal ET sequence|legend=1| 72, 152, 224f }}
{{Optimal ET sequence|legend=1| 45ef, 46, 91ef, 137def }}


Badness: 0.021679
Badness: 0.033067


Scales: [[Octoid72]], [[Octoid80]]
=== Sfour ===
Subgroup: 2.3.5.7.11


===== 17-limit =====
Comma list: 385/384, 2401/2376, 4375/4374
Subgroup: 2.3.5.7.11.13.17


Comma list: 169/168, 221/220, 289/288, 325/324, 540/539
Mapping: {{mapping| 1 2 3 3 3 | 0 -19 -31 -9 21 }}


Mapping: [{{val|8 1 3 3 16 14 21}}, {{val|0 3 4 5 3 4 3}}]
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.246


POTE generator: ~7/5 = 583.811
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}


{{Optimal ET sequence|legend=1| 72, 152, 224fg, 296ffg }}
Badness: 0.076567


Badness: 0.015614
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Scales: [[Octoid72]], [[Octoid80]]
Comma list: 196/195, 364/363, 385/384, 4375/4374


===== 19-limit =====
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -19 -31 -9 21 32 }}
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.239


Mapping: [{{val|8 1 3 3 16 14 21 34}}, {{val|0 3 4 5 3 4 3 0}}]
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}


POTE generator: ~7/5 = 584.064
Badness: 0.051893


{{Optimal ET sequence|legend=1| 72, 152, 224fg, 376ffgh }}
== Trideci ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Tridecatonic]].''


Badness: 0.016321
The trideci temperament (26 &amp; 65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the [[Octagar temperaments #Tridecatonic|tridecatonic temperament]], but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name ''trideci'' comes from "tridecim" (Latin for "[[wikipedia:13|thirteen]]").


Scales: [[Octoid72]], [[Octoid80]]
[[Subgroup]]: 2.3.5.7


==== Hexadecoid ====
[[Comma list]]: 4375/4374, 83349/81920
Hexadecoid (80&amp;144) has a period of 1/16 octave and tempers out 4225/4224.


Subgroup: 2.3.5.7.11.13
{{Mapping|legend=1| 13 0 -11 57 | 0 1 2 -1 }}


Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224
[[Optimal tuning]] ([[POTE]]): ~256/245 = 1\13, ~3/2 = 699.1410


Mapping: [{{val|16 26 38 46 56 59}}, {{val|0 -3 -4 -5 -3 1}}]
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdd }}


POTE generator: ~13/8 = 841.015
[[Badness]]: 0.184585


{{Optimal ET sequence|legend=1| 80, 144, 224 }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.030818
Comma list: 245/242, 385/384, 4375/4374


===== 17-limit =====
Mapping: {{mapping| 13 0 -11 57 45 | 0 1 2 -1 0 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.6179


Mapping: [{{val|16 26 38 46 56 59 65}}, {{val|0 -3 -4 -5 -3 1 2}}]
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdde }}


POTE generator: ~13/8 = 840.932
Badness: 0.084590


{{Optimal ET sequence|legend=1| 80, 144, 224, 528dg }}
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Badness: 0.028611
Comma list: 169/168, 245/242, 325/324, 385/384


===== 19-limit =====
Mapping: {{mapping| 13 0 -11 57 45 48 | 0 1 2 -1 0 0 }}
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.2969


Mapping: [{{val|16 26 38 46 56 59 65 68}}, {{val|0 -3 -4 -5 -3 1 2 0}}]
{{Optimal ET sequence|legend=1| 26, 65f, 91f, 156dff }}


POTE generator: ~13/8 = 840.896
Badness: 0.052366


{{Optimal ET sequence|legend=1| 80, 144, 224, 304dh, 528dghh }}
== Counterorson ==
Counterorson tempers out the {{monzo| 147 -103 7 }} comma in the 5-limit. It uses a generator that reaches the 3rd harmonic in 7 steps, but unlike the [[semicomma family]], 5th harmonic is 103 generators up and not 3 generators down. The two mappings converge on [[53edo]].


Badness: 0.023731
Subgroup: 2.3.5.7


== Parakleismic ==
Comma list: 4375/4374, {{monzo| 154 -54 -21 -7 }}
{{Main| Parakleismic }}
 
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo|8 14 -13}}, with the [[118edo|118EDO]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival|13 14 35 -8 19 42}} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival|13 14 35 -36 -8 19 -102 42 -132 -222}} adding 385/384. For the 7-limit [[99edo|99EDO]] may be preferred, but in the 11-limit it is best to stick with 118.
 
Subgroup: 2.3.5
 
[[Comma list]]: 1224440064/1220703125
 
[[Mapping]]: [{{val|1 5 6}}, {{val|0 -13 -14}}]
 
[[POTE generator]]: ~6/5 = 315.240
 
{{Optimal ET sequence|legend=1| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }}
 
[[Badness]]: 0.043279
 
=== 7-limit ===
Subgroup: 2.3.5.7
 
[[Comma list]]: 3136/3125, 4375/4374
 
[[Mapping]]: [{{val|1 5 6 12}}, {{val|0 -13 -14 -35}}]
 
[[Wedgie]]: {{multival|13 14 35 -8 19 42}}
 
[[POTE generator]]: ~6/5 = 315.181
 
{{Optimal ET sequence|legend=1| 19, 80, 99, 217, 316, 415 }}
 
[[Badness]]: 0.027431
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 385/384, 3136/3125, 4375/4374
 
Mapping: [{{val|1 5 6 12 -6}}, {{val|0 -13 -14 -35 36}}]
 
POTE generator: ~6/5 = 315.251
 
{{Optimal ET sequence|legend=1| 19, 99, 118 }}
 
Badness: 0.049711
 
=== Paralytic ===
The ''paralytic'' temperament (118&amp;217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&amp;217 tempers out 1001/1000, 1575/1573, and 3584/3575.
 
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 3136/3125, 4375/4374
 
Mapping: [{{val|1 5 6 12 25}}, {{val|0 -13 -14 -35 -82}}]
 
POTE generator: ~6/5 = 315.220
 
{{Optimal ET sequence|legend=1| 19e, 99e, 118, 217, 335, 552d, 887dd }}
 
Badness: 0.036027
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374
 
Mapping: [{{val|1 5 6 12 25 -16}}, {{val|0 -13 -14 -35 -82 75}}]
 
POTE generator: ~6/5 = 315.214
 
{{Optimal ET sequence|legend=1| 99e, 118, 217, 552d, 769de }}
 
Badness: 0.044710
 
==== Paraklein ====
The ''paraklein'' temperament (19e&amp;118) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]].
 
Subgroup: 2.3.5.7.11.13
 
Comma list: 196/195, 352/351, 625/624, 729/728
 
Mapping: [{{val|1 5 6 12 25 15}}, {{val|0 -13 -14 -35 -82 -43}}]
 
POTE generator: ~6/5 = 315.225
 
{{Optimal ET sequence|legend=1| 19e, 99ef, 118, 217ff, 335ff }}
 
Badness: 0.037618
 
=== Parkleismic ===
Subgroup: 2.3.5.7.11
 
Comma list: 176/175, 1375/1372, 2200/2187
 
Mapping: [{{val|1 5 6 12 20}}, {{val|0 -13 -14 -35 -63}}]
 
POTE generator: ~6/5 = 315.060
 
{{Optimal ET sequence|legend=1| 19e, 80, 179, 259cd }}
 
Badness: 0.055884
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 176/175, 325/324, 1375/1372
 
Mapping: [{{val|1 5 6 12 20 10}}, {{val|0 -13 -14 -35 -63 -24}}]
 
POTE generator: ~6/5 = 315.075
 
{{Optimal ET sequence|legend=1| 19e, 80, 179 }}
 
Badness: 0.036559
 
=== Paradigmic ===
Subgroup: 2.3.5.7.11
 
Comma list: 540/539, 896/891, 3136/3125
 
Mapping: [{{val|1 5 6 12 -1}}, {{val|0 -13 -14 -35 17}}]
 
POTE generator: ~6/5 = 315.096
 
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}
 
Badness: 0.041720
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 325/324, 540/539, 832/825
 
Mapping: [{{val|1 5 6 12 -1 10}}, {{val|0 -13 -14 -35 17 -24}}]
 
POTE generator: ~6/5 = 315.080
 
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}
 
Badness: 0.035781
 
=== Semiparakleismic ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 3136/3125, 4375/4374
 
Mapping: [{{val|2 10 12 24 19}}, {{val|0 -13 -14 -35 -23}}]
 
POTE generator: ~6/5 = 315.181
 
{{Optimal ET sequence|legend=1| 80, 118, 198, 316, 514c, 830c }}
 
Badness: 0.034208
 
==== Semiparamint ====
This extension was named ''semiparakleismic'' in the earlier materials.
 
Subgroup: 2.3.5.7.11.13
 
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374
 
Mapping: [{{val|2 10 12 24 19 -1}}, {{val|0 -13 -14 -35 -23 16}}]
 
POTE generator: ~6/5 = 315.156
 
{{Optimal ET sequence|legend=1| 80, 118, 198 }}
 
Badness: 0.033775
 
==== Semiparawolf ====
This extension was named ''gentsemiparakleismic'' in the earlier materials.
 
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 325/324, 364/363, 3136/3125
 
Mapping: [{{val|2 10 12 24 19 20}}, {{val|0 -13 -14 -35 -23 -24}}]
 
POTE generator: ~6/5 = 315.184
 
{{Optimal ET sequence|legend=1| 80, 118f, 198f }}
 
Badness: 0.040467
 
== Counterkleismic ==
{{see also| High badness temperaments #Counterhanson}}
 
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo|-20 -24 25}}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19&amp;224 temperament (''counterkleismic'', named by analogy to [[catakleismic]] and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).
 
Subgroup: 2.3.5.7
 
[[Comma list]]: 4375/4374, 158203125/157351936
 
[[Mapping]]: [{{val|1 -5 -4 -18}}, {{val|0 25 24 79}}]
 
[[Wedgie]]: {{multival|25 24 79 -20 55 116}}
 
[[POTE generator]]: ~6/5 = 316.060
 
{{Optimal ET sequence|legend=1| 19, 205, 224, 243, 467 }}
 
[[Badness]]: 0.090553
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 540/539, 4375/4374, 2097152/2096325
 
Mapping: [{{val|1 -5 -4 -18 19}}, {{val|0 25 24 79 -59}}]
 
POTE generator: ~6/5 = 316.071
 
{{Optimal ET sequence|legend=1| 19, 205, 224 }}
 
Badness: 0.070952
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 540/539, 625/624, 729/728, 10985/10976
 
Mapping: [{{val|1 -5 -4 -18 19 -15}}, {{val|0 25 24 79 -59 71}}]
 
POTE generator: ~6/5 = 316.070
 
{{Optimal ET sequence|legend=1| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }}
 
Badness: 0.033874
 
=== Counterlytic ===
Subgroup: 2.3.5.7.11
 
Comma list: 1375/1372, 4375/4374, 496125/495616
 
Mapping: [{{val|1 -5 -4 -18 -40}}, {{val|0 25 24 79 165}}]
 
POTE generator: ~6/5 = 316.065
 
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}
 
Badness: 0.065400
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 625/624, 729/728, 1375/1372, 10985/10976
 
Mapping: [{{val|1 -5 -4 -18 -40 -15}}, {{val|0 25 24 79 165 71}}]
 
POTE generator: ~6/5 = 316.065
 
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}
 
Badness: 0.029782
 
== Quincy ==
Subgroup: 2.3.5.7
 
[[Comma list]]: 4375/4374, 823543/819200
 
[[Mapping]]: [{{val|1 2 3 3}}, {{val|0 -30 -49 -14}}]
 
[[Wedgie]]: {{multival|30 49 14 8 -62 -105}}
 
[[POTE generator]]: ~1728/1715 = 16.613
 
{{Optimal ET sequence|legend=1| 72, 217, 289 }}
 
[[Badness]]: 0.079657
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 4000/3993, 4375/4374
 
Mapping: [{{val|1 2 3 3 4}}, {{val|0 -30 -49 -14 -39}}]
 
POTE generator: ~100/99 = 16.613
 
{{Optimal ET sequence|legend=1| 72, 217, 289 }}
 
Badness: 0.030875
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 364/363, 441/440, 676/675, 4375/4374
 
Mapping: [{{val|1 2 3 3 4 5}}, {{val|0 -30 -49 -14 -39 -94}}]
 
POTE generator: ~100/99 = 16.602
 
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}
 
Badness: 0.023862
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155
 
Mapping: [{{val|1 2 3 3 4 5 5}}, {{val|0 -30 -49 -14 -39 -94 -66}}]
 
POTE generator: ~100/99 = 16.602
 
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}
 
Badness: 0.014741
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675
 
Mapping: [{{val|1 2 3 3 4 5 5 4}}, {{val|0 -30 -49 -14 -39 -94 -66 18}}]
 
POTE generator: ~100/99 = 16.594
 
{{Optimal ET sequence|legend=1| 72, 145, 217 }}
 
Badness: 0.015197
 
== Sfourth ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Sfourth]].''
 
Subgroup: 2.3.5.7
 
[[Comma list]]: 4375/4374, 64827/64000
 
[[Mapping]]: [{{val|1 2 3 3}}, {{val|0 -19 -31 -9}}]
 
{{Multival|legend=1|19 31 9 5 -39 -66}}
 
[[POTE generator]]: ~49/48 = 26.287
 
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}
 
[[Badness]]: 0.123291
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 441/440, 4375/4374
 
Mapping: [{{val|1 2 3 3 4}}, {{val|0 -19 -31 -9 -25}}]
 
POTE generator: ~49/48 = 26.286
 
{{Optimal ET sequence|legend=1| 45e, 46, 91e, 137de }}
 
Badness: 0.054098
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 121/120, 169/168, 325/324, 441/440
 
Mapping: [{{val|1 2 3 3 4 4}}, {{val|0 -19 -31 -9 -25 -14}}]
 
POTE generator: ~49/48 = 26.310
 
{{Optimal ET sequence|legend=1| 45ef, 46, 91ef, 137def }}
 
Badness: 0.033067
 
=== Sfour ===
Subgroup: 2.3.5.7.11
 
Comma list: 385/384, 2401/2376, 4375/4374
 
Mapping: [{{val|1 2 3 3 3}}, {{val|0 -19 -31 -9 21}}]
 
POTE generator: ~49/48 = 26.246
 
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}
 
Badness: 0.076567
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 196/195, 364/363, 385/384, 4375/4374
 
Mapping: [{{val|1 2 3 3 3 3}}, {{val|0 -19 -31 -9 21 32}}]
 
POTE generator: ~49/48 = 26.239
 
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}
 
Badness: 0.051893
 
== Trideci ==
{{See also| High badness temperaments #Tridecatonic }}
 
The ''trideci'' temperament (26&amp;65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the [[Octagar temperaments #Tridecatonic|tridecatonic temperament]], but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name ''trideci'' comes from "tridecim" (Latin for "[[wikipedia:13|thirteen]]").
 
Subgroup: 2.3.5.7
 
[[Comma list]]: 4375/4374, 83349/81920
 
[[Mapping]]: [{{val|13 21 31 36}}, {{val|0 -1 -2 1}}]
 
[[POTE generator]]: ~3/2 = 699.1410
 
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdd }}
 
[[Badness]]: 0.184585
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 245/242, 385/384, 4375/4374
 
Mapping: [{{val|13 21 31 36 45}}, {{val|0 -1 -2 1 0}}]
 
POTE generator: ~3/2 = 699.6179
 
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdde }}
 
Badness: 0.084590
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 245/242, 325/324, 385/384
 
Mapping: [{{val|13 21 31 36 45 48}}, {{val|0 -1 -2 1 0 0}}]
 
POTE generator: ~3/2 = 699.2969
 
{{Optimal ET sequence|legend=1| 26, 65f, 91f, 156dff }}
 
Badness: 0.052366
 
== Counterorson ==
Counterorson tempers out the {{monzo|147 -103 7}} comma in the 5-limit. It uses a generator that reaches the 3rd harmonic in 7 steps, but unlike the [[semicomma family]], 5th harmonic is 103 generators up and not 3 generators down. The two mappings converge on [[53edo]].
 
Subgroup: 2.3.5.7


Comma list: 4375/4374, {{monzo|154 -54 -21 -7}}
Mapping: {{mapping| 1 0 -21 85 | 0 7 103 -363 }}


Mapping: [{{val|1 0 -21 85}}, {{val|0 7 103 -363}}]
Optimal tuning (CTE): ~2 = 1\1, ~{{monzo| 66 -23 -9 -3 }} = 271.7113


Optimal tuning (CTE): ~73786976294838206464/63068574878244140625 = 271.711
{{Optimal ET sequence|legend=1| 53, …, 1612, 1665, 1718 }}


{{Optimal ET sequence|legend=1|53, 1612, 1665, 1718, 1771}}, ...
Badness: 0.312806


== Notes ==
== Notes ==


[[Category:Temperament collections]]
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Ragismic microtemperaments| ]] <!-- main article -->
[[Category:Ragismic microtemperaments| ]] <!-- main article -->
[[Category:Ragismic| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Microtemperaments]]
[[Category:Microtemperaments]]