Canou family: Difference between revisions
Revoke cantawolf (since it doesn't make much sense -- the ~15/13 doesn't sound like one whatsoever) |
m Text replacement - "Category:Temperament families" to "Category:Temperament families Category:Pages with mostly numerical content" |
||
(11 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
The '''canou family''' of rank-3 | {{Technical data page}} | ||
The '''canou family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperament]]s [[tempering out|tempers out]] the [[canousma]], 4802000/4782969 ({{monzo| 4 -14 3 4 }}), a 7-limit comma measuring about 6.9 [[cent]]s. | |||
== Canou == | == Canou == | ||
{{Main| Canou temperament }} | {{Main| Canou temperament }} | ||
The canou temperament features a period of an octave and | The canou temperament features a [[period]] of an [[octave]] and [[generator]]s of [[3/2]] and [[81/70]]. The ~81/70-generator is about 255 cents. Three make [[14/9]]; four make [[9/5]]. It therefore splits the large septimal diesis, [[49/48]], into three equal parts, making two distinct [[interseptimal interval]]s related to the 35th harmonic. | ||
A basic tuning option would be [[99edo]], although [[80edo]] is even simpler and distinctive. More intricate tunings are provided by [[311edo]] and [[410edo]], whereas the [[optimal patent val]] goes up to [[1131edo]], relating it to the [[amicable]] temperament. | |||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: [[4802000/4782969]] | [[Comma list]]: [[4802000/4782969]] | ||
{{Mapping|legend=1| 1 0 0 -1 | 0 1 2 2 | 0 0 -4 3 }} | |||
: mapping generators: ~2, ~3, ~81/70 | |||
Lattice basis: | Lattice basis: | ||
Line 18: | Line 21: | ||
: Angle (3/2, 81/70) = 73.88 deg | : Angle (3/2, 81/70) = 73.88 deg | ||
[[ | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.3175, ~81/70 = 254.6220 | |||
: [[error map]]: {{val| 0.0000 +0.3625 -0.1667 -0.3249 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 702.3455, ~81/70 = 254.6237 | |||
: error map: {{val| 0.0000 +0.3904 -0.1175 -0.2640 }} | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit]]: 3 +c/14, 5 and 7 just | * [[7-odd-limit]]: 3 +c/14, 5 and 7 just | ||
: [[ | : [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.7 | ||
* [[9-odd-limit]]: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just | * [[9-odd-limit]]: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just | ||
: [[ | : [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5 | ||
{{ | {{Optimal ET sequence|legend=1| 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b }} | ||
[[Badness]]: 1.122 × 10<sup>-3</sup> | [[Badness]] (Smith): 1.122 × 10<sup>-3</sup> | ||
[[Complexity spectrum]]: 4/3, 9/7, 9/8, 7/6, 6/5, 10/9, 5/4, 8/7, 7/5 | [[Complexity spectrum]]: 4/3, 9/7, 9/8, 7/6, 6/5, 10/9, 5/4, 8/7, 7/5 | ||
== | == Undecimal canou == | ||
The fifth is in the range where a stack of four (i.e. a major third) can serve as ~[[19/15]] and a stack of five (i.e. a major seventh) can serve as ~[[19/10]], tempering out [[1216/1215]]. Moreover, the last generator of ~81/70 is sharpened to slightly overshoot [[22/19]], so it only makes sense to temper out their difference, [[1540/1539]]. The implied 11-limit comma is the [[symbiotic comma]], which suggests the [[wilschisma]] should also be tempered out in the 13-limit. | |||
Since the syntonic comma has been split in two, it is natural to map [[19/17]] to the mean of [[9/8]] and [[10/9]], tempering out [[1445/1444]]. From a commatic point of view, notice the other 11-limit comma, [[42875/42768]], is {{nowrap| S34 × S35<sup>2</sup> }}, suggesting tempering out [[595/594]] (S34 × S35), [[1156/1155]] (S34), and [[1225/1224]] (S35), which coincides with above. Finally, we can map [[23/20]] to the fourth complement of 22/19 to make an equidistant sequence consisting of 7/6, 22/19, 23/20, and 8/7, tempering out [[760/759]]. 311edo remains an excellent tuning in all the limits. | |||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 19712/19683, 42875/42768 | [[Comma list]]: 19712/19683, 42875/42768 | ||
{{Mapping|legend=1| 1 0 0 -1 -7 | 0 1 2 2 7 | 0 0 -4 3 -3 }} | |||
[[ | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.2115, ~81/70 = 254.6215 | |||
: [[error map]]: {{val| 0.0000 +0.2565 -0.3768 -0.5383 +0.2980 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 702.1829, ~81/70 = 254.6186 | |||
: error map: {{val| 0.0000 +0.2279 -0.4221 -0.6043 +0.1069 }} | |||
{{ | {{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | ||
[[Badness]]: 2. | [[Badness]] (Smith): 2.04 × 10<sup>-3</sup> | ||
[[Complexity spectrum]]: 4/3, 9/8, 9/7, 7/6, 5/4, 6/5, 10/9, 11/9, 8/7, 12/11, 11/10, 14/11, 11/8, 7/5 | [[Complexity spectrum]]: 4/3, 9/8, 9/7, 7/6, 5/4, 6/5, 10/9, 11/9, 8/7, 12/11, 11/10, 14/11, 11/8, 7/5 | ||
Line 57: | Line 67: | ||
Comma list: 2080/2079, 19712/19683, 42875/42768 | Comma list: 2080/2079, 19712/19683, 42875/42768 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -7 -13 | 0 1 2 2 7 10 | 0 0 -4 3 -3 4 }} | ||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2075, ~81/70 = 254.6183 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.1889, ~81/70 = 254.6222 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212, 217, 311, 740, 1051d }} | |||
Badness (Smith): 2.56 × 10<sup>-3</sup> | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 595/594, 833/832, 1156/1155, 19712/19683 | |||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 | 0 1 2 2 7 10 6 | 0 0 -4 3 -3 4 -2 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2296, ~51/44 = 254.6012 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2055, ~51/44 = 254.6066 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg }} | |||
Badness (Smith): 1.49 × 10<sup>-3</sup> | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Badness: 2. | Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215 | ||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 -6 | 0 1 2 2 7 10 6 7 | 0 0 -4 3 -3 4 -2 -4 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2355, ~22/19 = 254.5930 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2117, ~22/19 = 254.5983 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh }} | |||
Badness (Smith): 1.00 × 10<sup>-3</sup> | |||
=== 23-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1156/1155 | |||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 -6 4 | 0 1 2 2 7 10 6 7 1 | 0 0 -4 3 -3 4 -2 -4 -5 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2361, ~22/19 = 254.6222 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2359, ~22/19 = 254.6223 | |||
{{Optimal ET sequence|legend=0| 94, 193f, 212gh, 217, 311 }} | |||
Badness (Smith): 0.948 × 10<sup>-3</sup> | |||
== Canta == | == Canta == | ||
By adding [[896/891]], the pentacircle comma, [[33/32]] is equated with 28/27, so the scale is filled with this 33/32~28/27 mixture. This may be described as 75e & 80 & 99e, and 80edo makes the optimal. It has a natural extension to the 13-limit since 896/891 = (352/351)(364/363), named ''gentcanta'' in earlier materials. | By adding [[896/891]], the pentacircle comma, [[33/32]] is equated with 28/27, so the scale is filled with this 33/32~28/27 mixture. This may be described as 75e & 80 & 99e, and 80edo makes the optimal. It has a natural extension to the 13-limit since 896/891 = (352/351)(364/363), named ''gentcanta'' in earlier materials. | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 896/891, 472392/471625 | [[Comma list]]: 896/891, 472392/471625 | ||
{{Mapping|legend=1| 1 0 0 -1 6 | 0 1 2 2 -2 | 0 0 4 -3 -3 }} | |||
[[ | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.8093, ~64/55 = 254.3378 | |||
: [[error map]]: {{val| 0.0000 +0.8543 +1.9537 -0.1940 +6.0769 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 703.5249, ~64/55 = 254.5492 | |||
: error map: {{val| 0.0000 +1.5699 +2.5393 +1.8714 +5.2799 }} | |||
{{ | {{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e, 457bcddeeee }} | ||
[[Badness]]: 4. | [[Badness]] (Smith): 4.52 × 10<sup>-3</sup> | ||
=== 13-limit === | === 13-limit === | ||
Line 85: | Line 146: | ||
Comma list: 352/351, 364/363, 472392/471625 | Comma list: 352/351, 364/363, 472392/471625 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 6 11 | 0 1 2 2 -2 -5 | 0 0 4 -3 -3 -3 }} | ||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 703.6228, ~64/55 = 254.3447 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 703.8323, ~64/55 = 254.5887 | |||
Optimal | {{Optimal ET sequence|legend=0| 75e, 80, 99ef, 179ef }} | ||
Badness: 4. | Badness (Smith): 4.78 × 10<sup>-3</sup> | ||
== Semicanou == | == Semicanou == | ||
Semicanou adds 9801/9800, the kalisma, to the comma list, and may be described as 80 & 94 & 118. It splits the octave into two equal parts, each representing | Semicanou adds [[9801/9800]], the kalisma, to the comma list, and may be described as 80 & 94 & 118. It splits the octave into two equal parts, each representing 99/70~140/99. Note that {{nowrap| 99/70 {{=}} (81/70)(11/9) }}, this extension is more than natural. | ||
The other comma necessary to define it is 14641/14580, the [[semicanousma]], which is the difference between [[121/120]] and [[243/242]]. By flattening the 11th harmonic by one cent, it identifies [[20/11]] by three [[11/9]]'s stacked, so an octave can be divided into 11/9 | The other comma necessary to define it is 14641/14580, the [[semicanousma]], which is the difference between [[121/120]] and [[243/242]]. By flattening the 11th harmonic by about one cent, it identifies [[20/11]] by three [[11/9]]'s stacked, so an octave can be divided into 11/9, 11/9, 11/9, and 11/10. | ||
[[Subgroup]]: 2.3.5.7.11 | |||
[[Comma list]]: 9801/9800, 14641/14580 | [[Comma list]]: 9801/9800, 14641/14580 | ||
{{Mapping|legend=1| 2 0 0 -2 1 | 0 1 2 2 2 | 0 0 -4 3 -1 }} | |||
: mapping generators: ~99/70, ~3, ~81/70 | |||
[[ | [[Optimal tuning]]s: | ||
* [[CTE]]: ~99/70 = 600.0000, ~3/2 = 702.4262, ~81/70 = 254.6191 | |||
: [[error map]]: {{val| 0.0000 +0.4712 +0.0625 -0.1163 -1.0846 }} | |||
* [[CWE]]: ~99/70 = 600.0000, ~3/2 = 702.4048, ~81/70 = 254.6179 | |||
: error map: {{val| 0.0000 +0.4498 +0.0245 -0.1627 -1.1262 }} | |||
{{ | {{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | ||
[[Badness]]: 2. | [[Badness]] (Smith): 2.20 × 10<sup>-3</sup> | ||
=== 13-limit === | === 13-limit === | ||
Line 119: | Line 184: | ||
Comma list: 1716/1715, 2080/2079, 14641/14580 | Comma list: 1716/1715, 2080/2079, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 -11 | 0 1 2 2 2 5 | 0 0 -4 3 -1 6 }} | ||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4802, ~81/70 = 254.6526 | |||
* CWE: ~99/70 = 600.0000, ~3/2 = 702.4945, ~81/70 = 254.6511 | |||
Optimal | {{Optimal ET sequence|legend=0| 80f, 94, 118f, 198, 410 }} | ||
Badness: 2. | Badness (Smith): 2.97 × 10<sup>-3</sup> | ||
<!-- debatable canonicity | |||
==== 17-limit ==== | ==== 17-limit ==== | ||
Subgroup: 2.3.5.7.11.13.17 | Subgroup: 2.3.5.7.11.13.17 | ||
Line 132: | Line 200: | ||
Comma list: 715/714, 1089/1088, 1225/1224, 14641/14580 | Comma list: 715/714, 1089/1088, 1225/1224, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 | 0 1 2 2 2 5 6 | 0 0 -4 3 -1 6 -2 }} | ||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4415, ~81/70 = 254.6663 | |||
Optimal | {{Optimal ET sequence|legend=0| 94, 118f, 198g, 212g, 292, 410 }} | ||
Badness: 2. | Badness (Smith): 2.42 × 10<sup>-3</sup> | ||
==== 19-limit ==== | ==== 19-limit ==== | ||
Line 145: | Line 214: | ||
Comma list: 715/714, 1089/1088, 1216/1215, 1225/1224, 1445/1444 | Comma list: 715/714, 1089/1088, 1216/1215, 1225/1224, 1445/1444 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 -12 | 0 1 2 2 2 5 6 7 | 0 0 -4 3 -1 6 -2 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4030, ~81/70 = 254.6870 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 198gh, 212gh, 292h, 410, 622ef }} | |||
Badness (Smith): 2.18 × 10<sup>-3</sup> | |||
--> | |||
=== Semicanoumint === | === Semicanoumint === | ||
This extension was named ''semicanou'' in the earlier materials. It adds [[352/351]], the minthma, to the comma list, so that the flat ~11/9 simultaneously represents ~39/32. | This extension was named ''semicanou'' in the earlier materials. It adds [[352/351]], the minthma, to the comma list, so that the flat ~11/9 simultaneously represents ~39/32. | ||
Line 160: | Line 230: | ||
Comma list: 352/351, 9801/9800, 14641/14580 | Comma list: 352/351, 9801/9800, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 11 | 0 1 2 2 2 -1 | 0 0 -4 3 -1 -1 }} | ||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.5374, ~81/70 = 254.6819 | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.7916, ~81/70 = 254.6704 | |||
Optimal | {{Optimal ET sequence|legend=0| 80, 94, 118, 174d, 198, 490f }} | ||
Badness: 2. | Badness (Smith): 2.70 × 10<sup>-3</sup> | ||
=== Semicanouwolf === | === Semicanouwolf === | ||
Line 177: | Line 249: | ||
Comma list: 351/350, 364/363, 11011/10935 | Comma list: 351/350, 364/363, 11011/10935 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 0 | 0 1 2 2 2 3 | 0 0 -4 3 -1 -5 }} | ||
Optimal tunings: | |||
* CTE: ~55/39 = 600.0000, ~3/2 = 702.7417, ~15/13 = 254.3382 | |||
* CWE: ~55/39 = 600.0000, ~3/2 = 702.8092, ~15/13 = 254.3396 | |||
Optimal | {{Optimal ET sequence|legend=0| 80, 104c, 118f, 198f, 420cff }} | ||
Badness: 3. | Badness (Smith): 3.51 × 10<sup>-3</sup> | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Canou family| ]] <!-- main article --> | [[Category:Canou family| ]] <!-- main article --> | ||
[[Category:Canou| ]] <!-- key article --> | |||
[[Category:Rank 3]] | [[Category:Rank 3]] |