Sensamagic clan: Difference between revisions

m Cleanup (1/2)
Tags: Mobile edit Mobile web edit
 
(92 intermediate revisions by 15 users not shown)
Line 1: Line 1:
The '''sensamagic clan''' tempers out the [[sensamagic family|sensamagic comma]], [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. There are a number of [[Regular Temperaments|linear temperament]]s in the [[Regular Temperaments|clan]] (magic, father, sensi, godzilla, superpyth, octacot, rodan, hedgehog, clyde, shrutar, sidi) but they've mostly been discussed elsewhere. Tempering out 245/243 alone leads to a [[Planar temperament|rank three temperament]] for which [[283edo]] is the [[optimal patent val]].
{{Technical data page}}
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]].


= Bohpier =
== BPS ==
== 5-limit ==
{{Main| BPS }}
[[Comma list]]: 1220703125/1162261467


[[Mapping]]: [<1 0 0|, <0 13 19|]
BPS, for ''Bohlen–Pierce–Stearns'', is the 3.5.7-subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].


[[POTE generator]]: ~27/25 = 146.476
[[Subgroup]]: 3.5.7


{{Val list|legend=1| 8, 41, 131, 172, 213c }}
[[Comma list]]: 245/243


[[Badness]]: 0.8605
{{Mapping|legend=2| 1 1 2 | 0 -2 1 }}
 
: sval mapping generators: ~3, ~9/7
 
[[Optimal tuning]] ([[POTE]]): ~3 = 1901.9550, ~9/7 = 440.4881
 
[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]
 
=== Overview to extensions ===
The full 7-limit extensions' relation to BPS is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are sensi, cohemiripple, hedgehog, and fourfives.
 
These temperaments are distributed into different family pages.
* [[Sensi]] (+126/125) → [[Sensipent family #Sensi|Sensipent family]]
* ''[[Hedgehog]]'' (+50/49) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Cohemiripple]]'' (+1323/1250) → [[Ripple family #Cohemiripple|Ripple family]]
* ''[[Fourfives]]'' (+235298/234375) → [[Fifive family #Fourfives|Fifive family]]
 
The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pentacloud tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen.
 
Discussed elsewhere are
* [[Father]] (+16/15 or 28/27) → [[Father family #Father|Father family]]
* [[Godzilla]] (+49/48 or 81/80) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]]
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]]
* [[Superpyth]] (+64/63) → [[Archytas clan #Superpyth|Archytas clan]]
* [[Magic]] (+225/224) → [[Magic family #Septimal magic|Magic family]]
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]]
* ''[[Pentacloud]]'' (+16807/16384) → [[Quintile family #Pentacloud|Quintile family]]
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]]
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]]
* ''[[Shrutar]]'' (+2048/2025) → [[Diaschismic family #Shrutar|Diaschismic family]]
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]]
 
For ''no-twos'' extensions, see [[No-twos subgroup temperaments #BPS]].
 
Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.
 
== Bohpier ==
{{Main| Bohpier }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Bohpier]].''
 
Bohpier is named after its interesting [[relationship between Bohlen–Pierce and octave-ful temperaments|relationship with the non-octave Bohlen–Pierce equal temperament]].
 
[[Subgroup]]: 2.3.5.7


== 7-limit ==
[[Comma list]]: 245/243, 3125/3087
[[Comma list]]: 245/243, 3125/3087


[[Mapping]]: [<1 0 0 0|, <0 13 19 23|]
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~27/25 = 146.474


{{Multival|legend=1| 13 19 23 0 0 0 }}
[[Minimax tuning]]:
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3


[[POTE generator]]: ~27/25 = 146.474
{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }}


{{Val list|legend=1| 41, 49, 90, 131 }}
[[Badness]]: 0.068237


[[Badness]]: 0.0682
=== 11-limit ===
Subgroup: 2.3.5.7.11


== 11-limit ==
Comma list: 100/99, 245/243, 1344/1331
Comma list: 100/99, 245/243, 1344/1331


POTE generator: ~12/11 = 146.545
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }}


Mapping: [<1 0 0 0 2|, <0 13 19 23 12|]
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.545


{{Val list|legend=1| 41, 90e, 131e }}
Minimax tuning:
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }}
: unchanged-interval (eigenmonzo) basis: 2.11/9


Badness: 0.0339
{{Optimal ET sequence|legend=0| 41, 90e, 131e }}


== 13-limit ==
Badness: 0.033949
Comma list: 100/99, 144/143, 196/195, 275/273


POTE generator: ~12/11 = 146.603
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: [<1 0 0 0 2 2|, <0 13 19 23 12 14|]
Comma list: 100/99, 144/143, 196/195, 275/273
 
{{Val list|legend=1| 41, 90ef, 131ef, 221bdeff }}


Badness: 0.0249
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }}


== Music ==
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.603


by [[Chris Vaisvil]]:
Minimax tuning:  
* [http://micro.soonlabel.com/bophier/bophier-1.mp3 bophier-1.mp3]
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }}
* [http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3 bophier-12equal-six-octaves.mp3]
: Unchanged-interval (eigenmonzo) basis: 2.5


= Sensa aka escaped =
{{Optimal ET sequence|legend=0| 41, 90ef, 131ef, 221bdeff }}
{{see also| Escapade family #Escaped }}


[[Comma list]]: 245/243, 65625/65536
Badness: 0.024864


[[Mapping]]: [<1 2 2 4|, <0 -9 7 -26|]
=== Triboh ===
Triboh is named after the "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts.


{{Multival|legend=1| 9 -7 26 -32 16 80 }}
Subgroup: 2.3.5.7.11


[[POTE generator]]: ~28/27 = 55.122
Comma list: 245/243, 1331/1323, 3125/3087


{{Val list|legend=1| 22, 43d, 65, 87, 109, 196, 283 }}
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }}


[[Badness]]: 0.0887
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.828


== 11-limit ==
{{Optimal ET sequence|legend=0| 49, 123ce, 172 }}
Comma list: 245/243, 385/384, 4000/3993


Mapping: [<1 2 2 4 3|, <0 -9 7 -26 10|]
Badness: 0.162592


POTE generator: ~28/27 = 55.126
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Val list|legend=1| 22, 43d, 65, 87, 109, 196, 283 }}
Comma list: 245/243, 275/273, 847/845, 1331/1323


Badness: 0.0358
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }}


== 13-limit ==
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.822
Comma list: 245/243, 352/351, 385/384, 625/624


Mapping: [<1 2 2 4 3 2|, <0 -9 7 -26 10 37|]
{{Optimal ET sequence|legend=0| 49f, 123ce, 172f, 295ce, 467bccef }}


POTE generator: ~28/27 = 55.138
Badness: 0.082158


{{Val list|legend=1| 22, 65, 87, 109, 196, 283 }}
== Salsa ==
{{See also| Schismatic family }}


Badness: 0.0317
[[Subgroup]]: 2.3.5.7
 
= Salsa =
{{see also| Schismatic family }}


[[Comma list]]: 245/243, 32805/32768
[[Comma list]]: 245/243, 32805/32768


[[Mapping]]: [<1 1 7 -1|, <0 2 -16 13|]
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }}


{{Multival|legend=1| 2 -16 13 -30 15 75 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~128/105 = 351.049


[[POTE generator]]: ~128/105 = 351.049
{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}


{{Val list|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}
[[Badness]]: 0.080152


[[Badness]]: 0.08015
=== 11-limit ===
Subgroup: 2.3.5.7.11


== 11-limit ==
Comma list: 243/242, 245/242, 385/384
Comma list: 243/242, 245/242, 385/384


Mapping: [<1 1 7 -1 2|, <0 2 -16 13 5|]
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.014


POTE generator: ~11/9 = 351.014
{{Optimal ET sequence|legend=0| 17, 24, 41, 106d, 147d }}


{{Val list|legend=1| 17, 24, 41, 106d, 147d }}
Badness: 0.039444


Badness: 0.0394
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


== 13-limit ==
Comma list: 105/104, 144/143, 243/242, 245/242
Comma list: 105/104, 144/143, 243/242, 245/242


Mapping: [<1 1 7 -1 2 4|, <0 2 -16 13 5 -1|]
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.025


POTE generator: ~11/9 = 351.025
{{Optimal ET sequence|legend=0| 17, 24, 41, 106df, 147df }}


{{Val list|legend=1| 17, 24, 41, 106df, 147df }}
Badness: 0.030793


Badness: 0.0310
== Pycnic ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Stump]].''


= Pycnic =
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has MOS of size 9, 11, 13, 15, 17... which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 245/243, 525/512
[[Comma list]]: 245/243, 525/512


[[Mapping]]: [<1 3 -1 8|, <0 -3 7 -11|]
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~45/32 = 567.720


{{Multival|legend=1| 3 -7 11 -18 9 45 }}
{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }}


[[POTE generator]]: ~45/32 = 567.720
[[Badness]]: 0.073735


{{Val list|legend=1| 17, 19, 36c, 55c, 74cd, 93cdd }}
== Superthird ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Shibboleth]].''


[[Badness]]: 0.0737
[[Subgroup]]: 2.3.5.7


= Cohemiripple =
[[Comma list]]: 245/243, 78125/76832
{{see also| Ripple family }}


[[Comma list]]: 245/243, 1323/1250
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }}


[[Mapping]]: [<1 7 11 12|, <0 -10 -16 -17|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~9/7 = 439.076


{{Multival|legend=1| 10 16 17 2 -1 -5 }}
{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}


[[POTE generator]]: ~7/5 = 549.944
[[Badness]]: 0.139379


{{Val list|legend=1| 11cd, 13cd, 24 }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


[[Badness]]: 0.1902
Comma list: 100/99, 245/243, 78125/76832


== 11-limit ==
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }}
Comma list: 77/75, 243/242, 245/242


Mapping: [<1 7 11 12 17|, <0 -10 -16 -17 -25|]
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.152


POTE generator: ~7/5 = 549.945
{{Optimal ET sequence|legend=0| 11cd, 30d, 41, 153be, 194be, 235bcee }}


{{Val list|legend=1| 11cdee, 13cdee, 24 }}
Badness: 0.070917


Badness: 0.0827
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


== 13-limit ==
Comma list: 100/99, 144/143, 196/195, 1375/1352
Comma list: 66/65, 77/75, 147/143, 243/242


Mapping: [<1 7 11 12 17 14|, <0 -10 -16 -17 -25 -19|]
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }}


POTE generator: ~7/5 = 549.958
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.119


{{Val list|legend=1| 11cdeef, 13cdeef, 24 }}
{{Optimal ET sequence|legend=0| 11cdf, 30df, 41 }}


Badness: 0.0499
Badness: 0.052835


= Superthird =
== Superenneadecal ==
[[Comma list]]: 245/243, 78125/76832
Superenneadecal is a cousin of [[enneadecal]] but sharper fifth is used to temper 245/243.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 395136/390625


[[Mapping]]: [<1 13 15 25|, <0 -18 -20 -35|]
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }}


{{Multival|legend=1| 18 20 35 -10 5 25 }}
[[Optimal tuning]] ([[POTE]]): ~392/375 = 63.158, ~3/2 = 704.166


[[POTE generator]]: ~9/7 = 439.076
{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }}


{{Val list|legend=1| 41, 317bc, 358bc, 399bc }}
[[Badness]]: 0.132311


[[Badness]]: 0.1394
=== 11-limit ===
Subgroup: 2.3.5.7.11


== 11-limit ==
Comma list: 245/243, 2560/2541, 3773/3750
Comma list: 100/99, 245/243, 78125/76832


Mapping: [<1 13 15 25 6|, <0 -18 -20 -35 -4|]
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }}


POTE generator: ~9/7 = 439.152
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.667


{{Val list|legend=1| 41, 153be, 194be, 235bce }}
{{Optimal ET sequence|legend=0| 19, 76bcd, 95, 114e }}


Badness: 0.0709
Badness: 0.101496


== 13-limit ==
=== 13-limit ===
Comma list: 100/99, 144/143, 196/195, 1375/1352
Subgroup: 2.3.5.7.11.13


Mapping: [<1 13 15 25 6 24|, <0 -18 -20 -35 -4 -32|]
Comma list: 196/195, 245/243, 832/825, 1001/1000


POTE generator: ~9/7 = 439.119
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }}


{{Val list|legend=1| 41 }}
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.801


Badness: 0.0528
{{Optimal ET sequence|legend=0| 19, 76bcdf, 95, 114e }}


= Magus =
Badness: 0.053197
== 5-limit ==
[[Comma list]]: 50331648/48828125


[[Mapping]]: [<1 9 3|, <0 -11 -1|]
== Magus ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Magus]].''


[[POTE generator]]: ~5/4 = 391.225
Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as {{nowrap| 46 & 49 }} temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.


{{Val list|legend=1| 40, 43, 46, 181c, 227c, 273c, 319c }}
Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, magus can be thought of as a higher-complexity and sharper analogue of [[würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].


[[Badness]]: 0.3602
[[Subgroup]]: 2.3.5.7


== 7-limit ==
[[Comma list]]: 245/243, 28672/28125
[[Comma list]]: 245/243, 28672/28125


[[Mapping]]: [&lt;1 9 3 21|, &lt;0 -11 -1 -27|]
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }}


{{Multival|legend=1| 11 1 27 -24 12 60 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~5/4 = 391.465


[[POTE generator]]: ~5/4 = 391.465
{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }}


{{Val list|legend=1| 46, 95, 141bc, 187bc, 328bc }}
[[Badness]]: 0.108417


[[Badness]]: 0.1084
=== 11-limit ===
Subgroup: 2.3.5.7.11


== 11-limit ==
Comma list: 176/175, 245/243, 1331/1323
Comma list: 176/175, 245/243, 1331/1323


Mapping: [&lt;1 9 3 21 23|, &lt;0 -11 -1 -27 -29|]
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.503


POTE generator: ~5/4 = 391.503
{{Optimal ET sequence|legend=0| 46, 95, 141bc }}


{{Val list|legend=1| 46, 95, 141bc }}
Badness: 0.045108


Badness: 0.0451
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


== 13-limit ==
Comma list: 91/90, 176/175, 245/243, 1331/1323
Comma list: 91/90, 176/175, 245/243, 1331/1323


Mapping: [&lt;1 9 3 21 23 1|, &lt;0 -11 -1 -27 -29 4|]
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.366


POTE generator: ~5/4 = 391.366
{{Optimal ET sequence|legend=0| 46, 233bcff, 279bccff }}


{{Val list|legend=1| 46, 233bcf, 279bcf }}
Badness: 0.043024


Badness: 0.0430
== Leapweek ==
: ''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].''
 
[[Subgroup]]: 2.3.5.7


= Leapweek =
[[Comma list]]: 245/243, 2097152/2066715
[[Comma list]]: 245/243, 2097152/2066715


[[Mapping]]: [&lt;1 1 17 -6|, &lt;0 1 -25 15|]
{{Mapping|legend=1| 1 0 42 -21 | 0 1 -25 15 }}
 
: mapping generators: ~2, ~3
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~3/2 = 704.536


[[POTE generator]]: ~3/2 = 704.536
{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}


{{Val list|legend=1| 17, 46, 109, 155, 264b, 419b }}
[[Badness]]: 0.140577


[[Badness]]: 0.14058
=== 11-limit ===
Subgroup: 2.3.5.7.11


== 11-limit ==
Comma list: 245/243, 385/384, 1331/1323
Comma list: 245/243, 385/384, 1331/1323


Mapping: [&lt;1 1 17 -6 -3|, &lt;0 1 -25 15 11|]
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }}


POTE generator: ~3/2 = 704.554
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.554


{{Val list|legend=1| 17, 46, 109, 264b, 373b, 637be }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109, 264b, 373b, 637bbe }}


Badness: 0.0507
Badness: 0.050679
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


== 13-limit ==
Comma list: 169/168, 245/243, 352/351, 364/363
Comma list: 169/168, 245/243, 352/351, 364/363


Mapping: [&lt;1 1 17 -6 -3 -1|, &lt;0 1 -25 15 11 8|]
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.571
 
{{Optimal ET sequence|legend=0| 17, 29c, 46, 63, 109 }}
 
Badness: 0.032727
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 154/153, 169/168, 245/243, 256/255, 273/272
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.540
 
{{Optimal ET sequence|legend=0| 17g, 29cg, 46, 109, 155f, 264bfg }}
 
Badness: 0.026243
 
==== Leapweeker ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 136/135, 169/168, 221/220, 245/243, 364/363
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }}


POTE generator: ~3/2 = 704.571
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.537


{{Val list|legend=1| 17, 46, 63, 109, 218f, 373bf }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109g, 155fg, 264bfgg }}


Badness: 0.0327
Badness: 0.026774


[[Category:Theory]]
[[Category:Temperament clans]]
[[Category:Temperament clan]]
[[Category:Pages with mostly numerical content]]
[[Category:Sensamagic]]
[[Category:Sensamagic clan| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Listen]]
[[Category:Listen]]