Sensamagic clan: Difference between revisions

Sensi: restore POTE by request
Tags: Mobile edit Mobile web edit
 
(24 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Technical data page}}
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]].
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]].


== BPS ==
== BPS ==
The ''BPS'', for ''Bohlen–Pierce–Stearns'', is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].
{{Main| BPS }}
 
BPS, for ''Bohlen–Pierce–Stearns'', is the 3.5.7-subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].


[[Subgroup]]: 3.5.7
[[Subgroup]]: 3.5.7
Line 8: Line 11:
[[Comma list]]: 245/243
[[Comma list]]: 245/243


{{mapping|legend=2| 1 1 2 | 0 -2 1 }}
{{Mapping|legend=2| 1 1 2 | 0 -2 1 }}


: sval mapping generators: ~3, ~9/7
: sval mapping generators: ~3, ~9/7


[[Optimal tuning]] ([[POTE]]): ~3 = 1\1edt, ~9/7 = 440.4881
[[Optimal tuning]] ([[POTE]]): ~3 = 1901.9550, ~9/7 = 440.4881


[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]
[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]
Line 19: Line 22:
The full 7-limit extensions' relation to BPS is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are sensi, cohemiripple, hedgehog, and fourfives.  
The full 7-limit extensions' relation to BPS is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are sensi, cohemiripple, hedgehog, and fourfives.  


The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pental tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen.  
These temperaments are distributed into different family pages.
* [[Sensi]] (+126/125) → [[Sensipent family #Sensi|Sensipent family]]
* ''[[Hedgehog]]'' (+50/49) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Cohemiripple]]'' (+1323/1250) → [[Ripple family #Cohemiripple|Ripple family]]
* ''[[Fourfives]]'' (+235298/234375) → [[Fifive family #Fourfives|Fifive family]]
 
The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pentacloud tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen.  


Discussed elsewhere are
Discussed elsewhere are
* ''[[Father]]'' (+16/15 or 28/27) → [[Father family #Father|Father family]]
* [[Father]] (+16/15 or 28/27) → [[Father family #Father|Father family]]
* [[Godzilla]] (+49/48 or 81/80) → [[Meantone family #Godzilla|Meantone family]]
* [[Godzilla]] (+49/48 or 81/80) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]]
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]]
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]]
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]]
Line 30: Line 39:
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]]
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]]
* ''[[Pental]]'' (+16807/16384) → [[Pental family #Septimal pental|Pental family]]
* ''[[Pentacloud]]'' (+16807/16384) → [[Quintile family #Pentacloud|Quintile family]]
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]]
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]]
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]]
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]]
Line 36: Line 45:
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]]
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]]


Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.
For ''no-twos'' extensions, see [[No-twos subgroup temperaments #BPS]].
 
== Sensi ==
{{Main| Sensi }}
{{See also| Sensipent family #Sensi }}
 
Sensi tempers out [[126/125]], [[686/675]] and [[4375/4374]] in addition to [[245/243]], and can be described as the 19 & 27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. [[46edo]] is an excellent sensi tuning, and [[mos scale]]s of 8-, 11-, 19- and 27-tones are available.
 
 
=== Septimal sensi ===
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 126/125, 245/243
 
{{Mapping|legend=1| 1 6 8 11 | 0 -7 -9 -13 }}
 
: mapping generators: ~2, ~14/9
 
{{Multival|legend=1| 7 9 13 -2 1 5 }}
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~9/7 = 443.3166
* [[POTE]]: ~2 = 1\1, ~9/7 = 443.383
 
[[Minimax tuning]]:
* [[7-odd-limit]]: ~9/7 = {{monzo| 2/13 0 0 1/13 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7
* [[9-odd-limit]]: ~9/7 = {{monzo| 1/5 2/5 -1/5 0 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/5
 
[[Tuning ranges of regular temperaments|Tuning ranges]]:
* 7-odd-limit [[diamond monotone]]: ~9/7 = [442.105, 450.000] (7\19 to 3\8)
* 9-odd-limit diamond monotone: ~9/7 = [442.105, 444.444] (7\19 to 10\27)
* 7-odd-limit [[diamond tradeoff]]: ~9/7 = [442.179, 445.628]
* 9-odd-limit diamond tradeoff: ~9/7 = [435.084, 445.628]
 
[[Algebraic generator]]: The real root of ''x''<sup>5</sup> + ''x''<sup>4</sup> - 4''x''<sup>2</sup> + ''x'' - 1, at 443.3783 cents.
 
{{Optimal ET sequence|legend=1| 19, 27, 46 }}
 
[[Badness]]: 0.025622
 
==== 2.3.5.7.13 subgroup (sensation) ====
Subgroup: 2.3.5.7.13
 
Comma list: 91/90, 126/125, 169/168
 
Sval mapping: {{mapping| 1 6 8 11 10 | 0 -7 -9 -13 -10 }}
 
Gencom mapping: {{mapping| 1 6 8 11 0 10 | 0 -7 -9 -13 0 -10 }}
 
: gencom: [2 14/9; 91/90 126/125 169/168]
 
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 443.4016
 
{{Optimal ET sequence|legend=1| 19, 27, 46, 111df }}
 
=== Sensor ===
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 245/243, 385/384
 
Mapping: {{mapping| 1 6 8 11 -6 | 0 -7 -9 -13 15 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.2987
* POTE: ~2 = 1\1, ~9/7 = 443.294
 
{{Optimal ET sequence|legend=1| 19, 27, 46, 111d }}
 
Badness: 0.037942
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 126/125, 169/168, 385/384
 
Mapping: {{mapping| 1 6 8 11 -6 10 | 0 -7 -9 -13 15 -10 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.3658
* POTE: ~2 = 1\1, ~9/7 = 443.321
 
{{Optimal ET sequence|legend=1| 19, 27, 46, 111df }}
 
Badness: 0.025575
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 91/90, 126/125, 154/153, 169/168, 256/255
 
Mapping: {{mapping| 1 6 8 11 -6 10 -6 | 0 -7 -9 -13 15 -10 16 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.3775
* POTE: ~2 = 1\1, ~9/7 = 443.365
 
{{Optimal ET sequence|legend=1| 19, 27, 46 }}
 
Badness: 0.022908
 
=== Sensus ===
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 176/175, 245/243
 
Mapping: {{mapping| 1 6 8 11 23 | 0 -7 -9 -13 -31 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.4783
* POTE: ~2 = 1\1, ~9/7 = 443.626
 
{{Optimal ET sequence|legend=1| 19e, 27e, 46, 119c }}
 
Badness: 0.029486
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 126/125, 169/168, 352/351
 
Mapping: {{mapping| 1 6 8 11 23 10 | 0 -7 -9 -13 -31 -10 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.5075
* POTE: ~2 = 1\1, ~9/7 = 443.559
 
{{Optimal ET sequence|legend=1| 19e, 27e, 46 }}
 
Badness: 0.020789
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 91/90, 126/125, 136/135, 154/153, 169/168
 
Mapping: {{mapping| 1 6 8 11 23 10 23 | 0 -7 -9 -13 -31 -10 -30 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.5050
* POTE: ~2 = 1\1, ~9/7 = 443.551
 
{{Optimal ET sequence|legend=1| 19eg, 27eg, 46 }}
 
Badness: 0.016238
 
=== Sensis ===
Subgroup: 2.3.5.7.11
 
Comma list: 56/55, 100/99, 245/243
 
Mapping: {{mapping| 1 6 8 11 6 | 0 -7 -9 -13 -4 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.1886
* POTE: ~2 = 1\1, ~9/7 = 443.962
 
{{Optimal ET sequence|legend=1| 8d, 19, 27e }}
 
Badness: 0.028680
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 56/55, 78/77, 91/90, 100/99
 
Mapping: {{mapping| 1 6 8 11 6 10 | 0 -7 -9 -13 -4 -10 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.2863
* POTE: ~2 = 1\1, ~9/7 = 443.945
 
{{Optimal ET sequence|legend=1| 8d, 19, 27e }}
 
Badness: 0.020017
 
=== Sensa ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 77/75, 99/98
 
Mapping: {{mapping| 1 6 8 11 11 | 0 -7 -9 -13 -12 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.7814
* POTE: ~2 = 1\1, ~9/7 = 443.518
 
{{Optimal ET sequence|legend=1| 8d, 19e, 27 }}
 
Badness: 0.036835
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 66/65, 77/75, 143/140
 
Mapping: {{mapping| 1 6 8 11 11 11 | 0 -7 -9 -13 -12 -11 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 443.7877
* POTE: ~2 = 1\1, ~9/7 = 443.506
 
{{Optimal ET sequence|legend=1| 8d, 19e, 27 }}
 
Badness: 0.023258
 
=== Bisensi ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 126/125, 245/243
 
Mapping: {{mapping| 2 5 7 9 9 | 0 -7 -9 -13 -8 }}
 
: mapping generators: ~99/70, ~11/10
 
Optimal tunings:
* CTE: ~99/70 = 1\2, ~11/10 = 156.6312
* POTE: ~99/70 = 1\2, ~11/10 = 156.692
 
{{Optimal ET sequence|legend=1| 8d, …, 38d, 46 }}
 
Badness: 0.041723
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 121/120, 126/125, 169/168
 
Mapping: {{mapping| 2 5 7 9 9 10 | 0 -7 -9 -13 -8 -10 }}
 
Optimal tunings:
* CTE: ~55/39 = 1\2, ~11/10 = 156.5584
* POTE: ~55/39 = 1\2, ~11/10 = 156.725
 
{{Optimal ET sequence|legend=1| 8d, …, 38df, 46 }}
 
Badness: 0.026339
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 91/90, 121/120, 126/125, 154/153, 169/168
 
Mapping: {{mapping| 2 5 7 9 9 10 10 | 0 -7 -9 -13 -8 -10 -7 }}
 
Optimal tunings:
* CTE: ~17/12 = 1\2, ~11/10 = 156.5534
 
{{Optimal ET sequence|legend=1| 8d, …, 38df, 46 }}
 
Badness: 0.0188
 
=== Hemisensi ===
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 243/242, 245/242
 
Mapping: {{mapping| 1 13 17 24 32 | 0 -14 -18 -26 -35 }}
 
: mapping generators: ~2, ~44/25
 
Optimal tunings:
* CTE: ~2 = 1\1, ~25/22 = 221.5981
* POTE: ~2 = 1\1, ~25/22 = 221.605
 
{{Optimal ET sequence|legend=1| 27e, 38d, 65 }}
 
Badness: 0.048714
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 126/125, 169/168, 243/242
 
Mapping: {{mapping| 1 13 17 24 32 30 | 0 -14 -18 -26 -35 -30 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~25/22 = 221.6333
* POTE: ~2 = 1\1, ~25/22 = 221.556
 
{{Optimal ET sequence|legend=1| 27e, 38df, 65f }}
 
Badness: 0.033016
 
== Cohemiripple ==
{{See also| Ripple family }}
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 1323/1250
 
{{Mapping|legend=1| 1 7 11 12 | 0 -10 -16 -17 }}
 
{{Multival|legend=1| 10 16 17 2 -1 -5 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 549.944
 
{{Optimal ET sequence|legend=1| 11cd, 13cd, 24 }}
 
[[Badness]]: 0.190208
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 77/75, 243/242, 245/242
 
Mapping: {{mapping| 1 7 11 12 17 | 0 -10 -16 -17 -25 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 549.945
 
{{Optimal ET sequence|legend=1| 11cdee, 13cdee, 24 }}
 
Badness: 0.082716
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 66/65, 77/75, 147/143, 243/242
 
Mapping: {{mapping| 1 7 11 12 17 14 | 0 -10 -16 -17 -25 -19 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 549.958
 
{{Optimal ET sequence|legend=1| 11cdeef, 13cdeef, 24 }}
 
Badness: 0.049933
 
== Fourfives ==
{{See also| Fifive family }}
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 235298/234375
 
{{Mapping|legend=1| 4 4 6 7 | 0 5 7 9 }}
 
: mapping generators: ~25/21, ~27/25
 
[[Optimal tuning]] ([[POTE]]): ~25/21 = 1\4, ~27/25 = 140.754
 
{{Optimal ET sequence|legend=1| 8d, 60, 68, 128 }}
 
[[Badness]]: 0.114143
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 245/243, 385/384, 235298/234375
 
Mapping: {{mapping| 4 4 6 7 19 | 0 5 7 9 -11 }}
 
Optimal tuning (POTE): ~25/21 = 1\4, ~27/25 = 140.771
 
{{Optimal ET sequence|legend=1| 8de, 60, 68, 128, 196 }}
 
Badness: 0.120165
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 196/195, 245/243, 385/384, 20000/19773
 
Mapping: {{mapping| 4 4 6 7 19 12 | 0 5 7 9 -11 6 }}
 
Optimal tuning (POTE): ~25/21 = 1\4, ~13/12 = 140.760


{{Optimal ET sequence|legend=1| 8de, 60, 68, 128, 196f }}
Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.
 
Badness: 0.067365
 
=== Quadrafives ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 245/243, 1375/1372
 
Mapping: {{mapping| 4 4 6 7 11 | 0 5 7 9 6 }}
 
Optimal tuning (POTE): ~25/21 = 1\4, ~27/25 = 140.630
 
{{Optimal ET sequence|legend=1| 8d, 60e, 68, 128e }}
 
Badness: 0.057268
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 121/120, 196/195, 245/243, 275/273
 
Mapping: {{mapping| 4 4 6 7 11 12 | 0 5 7 9 6 6 }}
 
Optimal tuning (POTE): ~25/21 = 1\4, ~13/12 = 140.728
 
{{Optimal ET sequence|legend=1| 8d, 60e, 68, 128e }}
 
Badness: 0.036128
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 121/120, 154/153, 170/169, 196/195, 245/243
 
Mapping: {{mapping| 4 4 6 7 11 12 14 | 0 5 7 9 6 6 5 }}
 
Optimal tuning (POTE): ~25/21 = 1\4, ~13/12 = 140.718
 
{{Optimal ET sequence|legend=1| 8d, 60e, 68, 128e }}
 
Badness: 0.024796


== Bohpier ==
== Bohpier ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Bohpier]].''
{{Main| Bohpier }}
{{Main| Bohpier }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Bohpier]].''


'''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen-Pierce equal temperament]].
Bohpier is named after its interesting [[relationship between Bohlen–Pierce and octave-ful temperaments|relationship with the non-octave Bohlen–Pierce equal temperament]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 458: Line 61:
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }}
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }}


{{Multival|legend=1| 13 19 23 0 0 0 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~27/25 = 146.474
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/25 = 146.474


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }}
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }}
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }}
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }}
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.3
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3


{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }}
{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }}
Line 479: Line 80:
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }}
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }}


Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.545
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.545


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }}
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }}
: Eigenmonzo basis (unchanged-interval basis): 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


{{Optimal ET sequence|legend=1| 41, 90e, 131e }}
{{Optimal ET sequence|legend=0| 41, 90e, 131e }}


Badness: 0.033949
Badness: 0.033949
Line 496: Line 97:
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }}
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }}


Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.603
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.603


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }}
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }}
: Eigenmonzo (unchanged-interval) basis: 2.5
: Unchanged-interval (eigenmonzo) basis: 2.5


{{Optimal ET sequence|legend=1| 41, 90ef, 131ef, 221bdeff }}
{{Optimal ET sequence|legend=0| 41, 90ef, 131ef, 221bdeff }}


Badness: 0.024864
Badness: 0.024864
; Music
by [[Chris Vaisvil]]:
* [http://micro.soonlabel.com/bophier/bophier-1.mp3 bophier&#45;1.mp3]
* [http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3 bophier&#45;12equal&#45;six&#45;octaves.mp3]


=== Triboh ===
=== Triboh ===
'''Triboh''' is named after "[[39edt|Triple Bohlen-Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen-Pierce]] scale into three equal parts.  
Triboh is named after the "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 520: Line 116:
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }}
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }}


Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.828
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.828


{{Optimal ET sequence|legend=1| 49, 123ce, 172 }}
{{Optimal ET sequence|legend=0| 49, 123ce, 172 }}


Badness: 0.162592
Badness: 0.162592
Line 533: Line 129:
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }}
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }}


Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.822
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.822


{{Optimal ET sequence|legend=1| 49f, 123ce, 172f, 295ce, 467bccef }}
{{Optimal ET sequence|legend=0| 49f, 123ce, 172f, 295ce, 467bccef }}


Badness: 0.082158
Badness: 0.082158
Line 548: Line 144:
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }}
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }}


{{Multival|legend=1| 2 -16 13 -30 15 75 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~128/105 = 351.049
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~128/105 = 351.049


{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}
{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}
Line 563: Line 157:
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }}
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.014
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.014


{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d }}
{{Optimal ET sequence|legend=0| 17, 24, 41, 106d, 147d }}


Badness: 0.039444
Badness: 0.039444
Line 576: Line 170:
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }}
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.025
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.025


{{Optimal ET sequence|legend=1| 17, 24, 41, 106df, 147df }}
{{Optimal ET sequence|legend=0| 17, 24, 41, 106df, 147df }}


Badness: 0.030793
Badness: 0.030793


== Pycnic ==
== Pycnic ==
{{See also| High badness temperaments #Stump }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Stump]].''


The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
Line 593: Line 187:
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }}
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }}


{{Multival|legend=1| 3 -7 11 -18 9 45 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~45/32 = 567.720
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~45/32 = 567.720


{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }}
{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }}
Line 602: Line 194:


== Superthird ==
== Superthird ==
{{See also| Shibboleth family }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Shibboleth]].''


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 610: Line 202:
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }}
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }}


{{Multival|legend=1| 18 20 35 -10 5 25 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~9/7 = 439.076
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 439.076


{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}
{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}
Line 625: Line 215:
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }}
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }}


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.152
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.152


{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 153be, 194be, 235bcee }}
{{Optimal ET sequence|legend=0| 11cd, 30d, 41, 153be, 194be, 235bcee }}


Badness: 0.070917
Badness: 0.070917
Line 638: Line 228:
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }}
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }}


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.119
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.119


{{Optimal ET sequence|legend=1| 11cdf, 30df, 41 }}
{{Optimal ET sequence|legend=0| 11cdf, 30df, 41 }}


Badness: 0.052835
Badness: 0.052835
Line 653: Line 243:
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }}
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }}


[[Optimal tuning]] ([[POTE]]): ~392/375 = 1\19, ~3/2 = 704.166
[[Optimal tuning]] ([[POTE]]): ~392/375 = 63.158, ~3/2 = 704.166


{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }}
{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }}
Line 666: Line 256:
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }}
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }}


Optimal tuning (POTE): ~33/32 = 1\19, ~3/2 = 705.667
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.667


{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114e }}
{{Optimal ET sequence|legend=0| 19, 76bcd, 95, 114e }}


Badness: 0.101496
Badness: 0.101496
Line 679: Line 269:
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }}
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }}


Optimal tuning (POTE): ~33/32 = 1\19, ~3/2 = 705.801
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.801


{{Optimal ET sequence|legend=1| 19, 76bcdf, 95, 114e }}
{{Optimal ET sequence|legend=0| 19, 76bcdf, 95, 114e }}


Badness: 0.053197
Badness: 0.053197


== Magus ==
== Magus ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Magus]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Magus]].''


Magus temperament tempers out 50331648/48828125 (salegu) in the 5-limit. This temperament can be described as 46 &amp; 49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[Starling temperaments #Amigo|amigo]] (43 &amp; 46) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.
Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as {{nowrap| 46 & 49 }} temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.
 
Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, magus can be thought of as a higher-complexity and sharper analogue of [[würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 696: Line 288:
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }}
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }}


{{Multival|legend=1| 11 1 27 -24 12 60 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~5/4 = 391.465
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.465


{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }}
{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }}
Line 711: Line 301:
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }}
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }}


Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.503
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.503


{{Optimal ET sequence|legend=1| 46, 95, 141bc }}
{{Optimal ET sequence|legend=0| 46, 95, 141bc }}


Badness: 0.045108
Badness: 0.045108
Line 724: Line 314:
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }}
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }}


Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.366
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.366


{{Optimal ET sequence|legend=1| 46, 233bcff, 279bccff }}
{{Optimal ET sequence|legend=0| 46, 233bcff, 279bccff }}


Badness: 0.043024
Badness: 0.043024


== Leapweek ==
== Leapweek ==
:''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].''
: ''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].''


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 741: Line 331:
: mapping generators: ~2, ~3
: mapping generators: ~2, ~3


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.536
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~3/2 = 704.536


{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}
{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}
Line 754: Line 344:
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }}
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.554
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.554


{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 264b, 373b, 637bbe }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109, 264b, 373b, 637bbe }}


Badness: 0.050679
Badness: 0.050679
Line 767: Line 357:
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }}
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.571
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.571


{{Optimal ET sequence|legend=1| 17, 29c, 46, 63, 109 }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 63, 109 }}


Badness: 0.032727
Badness: 0.032727
Line 780: Line 370:
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }}
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.540
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.540


{{Optimal ET sequence|legend=1| 17g, 29cg, 46, 109, 155f, 264bfg }}
{{Optimal ET sequence|legend=0| 17g, 29cg, 46, 109, 155f, 264bfg }}


Badness: 0.026243
Badness: 0.026243
Line 793: Line 383:
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }}
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.537
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.537


{{Optimal ET sequence|legend=1| 17, 29c, 46, 109g, 155fg, 264bfgg }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109g, 155fg, 264bfgg }}


Badness: 0.026774
Badness: 0.026774


[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Sensamagic clan| ]] <!-- main article -->
[[Category:Sensamagic clan| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Listen]]
[[Category:Listen]]