Sensipent family: Difference between revisions

m Cleanup (1/3)
Tags: Mobile edit Mobile web edit
 
(66 intermediate revisions by 11 users not shown)
Line 5: Line 5:
| ja =  
| ja =  
}}
}}
{{Technical data page}}
Temperaments of the '''sensipent family''' temper out the [[sensipent comma]], 78732/78125, also known as medium semicomma. The head of this family is sensipent i.e. the 5-limit version of [[sensi]], generated by the naiadic interval of tempered 162/125. Two generators make 5/3, seven make harmonic 6 and nine make harmonic 10. Its [[ploidacot]] is beta-heptacot ([[pergen]] (P8, ccP5/7)) and its color name is Sepguti.
The second comma of the comma list determines which 7-limit family member we are looking at. Sensi adds [[126/125]]. Sensei adds [[225/224]]. Warrior adds [[5120/5103]]. These are all strong extensions that use the same period and generator as sensipent.
Bison adds [[6144/6125]] with a semioctave period. Subpental adds [[3136/3125]] or [[19683/19600]] with a generator of ~56/45; two generator steps make the original. Trisensory adds [[1728/1715]] with a 1/3-octave period. Heinz adds [[1029/1024]] with a generator of ~48/35; three make the original. Catafourth adds [[2401/2400]] with a generator of ~250/189; four make the original. Finally, browser adds [[16875/16807]] with a generator of ~49/45; five make the original.
Temperaments discussed elsewhere include:
* ''[[Catafourth]]'' → [[Breedsmic temperaments #Catafourth|Breedsmic temperaments]] (+2401/2400)
* ''[[Browser]]'' → [[Mirkwai clan #Browser|Mirkwai clan]] (+16875/16807)
Considered below are sensi, sensei, warrior, bison, subpental, trisensory and heinz.
== Sensipent ==
{{Main| Sensipent }}
[[Subgroup]]: 2.3.5


= Sensipent =
[[Comma list]]: 78732/78125
[[Comma list]]: 78732/78125


[[Mapping]]: [{{val| 1 6 8 }}, {{val| 0 -7 -9 }}]
{{Mapping|legend=1| 1 -1 -1 | 0 7 9 }}
 
: mapping generators: ~2, ~162/125
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~162/125 = 443.058
 
{{Optimal ET sequence|legend=1| 8, 19, 46, 65, 539, 604c, 669c, 734c, 799c, 864c, 929c }}
 
[[Badness]]:
* Smith: 0.035220
* Dirichlet: 0.826
 
=== 2.3.5.31 subgroup ===
Fascinatingly, essentially the only simple and accurate extension that preserves the occurrence of sensipent's tempered [[5-limit]] structure in such large edos as [[539edo|539]] is the one with prime 31 by interpreting the generator accurately as [[31/24]]~[[40/31]], tempering out [[961/960|S31 = 961/960]], so that the [[31-limit]] quarter-tones [[32/31]] and [[31/30]] are equated, as sensipent splits [[16/15]] into two equal parts. For a less sparse subgroup present in smaller edo tunings like [[111edo]] at the cost of slight accuracy, see the extension to the 2.3.5.11.17.31 subgroup [[#Sensible]].
 
[[Subgroup]]: 2.3.5.31
 
[[Comma list]]: 961/960, 2511/2500
 
{{Mapping|legend=1| 1 -1 -1 2 | 0 7 9 8}}
 
: mapping generators: ~2, ~31/24
 
{{Optimal ET sequence|legend=1| 8, 11c, 19, 46, 65, 344, 409, 474, 539, 604c }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~31/24 = 443.050
 
[[Badness]] (Sintel): 0.243
 
=== Sendai ===
{{ See also | Sensipent#Sendai interval table }}
Sendai is an accurate extension of (2.3.5.31) [[#Sensipent|sensipent]] with primes [[23/16|23]] and [[29/16|29]] found by [[User:VIxen|VIxen]]. It is named after the body of acquis designed to prevent disaster risk and improve civil protection through international cooperation and after the city in Japan of the same name where it was signed (and where an international music competition is held).
 
[[Subgroup]]: 2.3.5.23.29.31
 
[[Comma list]]: 465/464, 576/575, 621/620, 900/899
 
{{Mapping|legend=1| 1 -1 -1 6 -4 2| 0 7 9 -4 24 8 }}
 
{{Optimal ET sequence|legend=1| 19, 46j, 65, 149, 363j }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~31/24 = 442.989
 
[[Badness]] (Sintel): 0.283
 
=== Sensible ===
{{ See also | Sensipent#Sensible interval table }}
Sensible is an extension of sensipent with prime 11 of dubious canonicity but significantly higher accuracy than [[sensi]]. It interprets the generator as [[165/128]]~[[128/99]] by tempering out [[8019/8000]] so that [[11/8]] is reached as ([[10/9]])<sup>3</sup>. This extension is very strong as supported by the [[optimal ET sequence]] going very far and as supported by another observation that it also tempers out the [[semiporwellisma]], which is equal to [[961/960|S31]] × [[1024/1023|S32]]<sup>2</sup> (thus forming the S-expression-based comma list). The vanish of the semiporwellisma, a [[lopsided comma]], implies that this temperament equates ([[33/32]])<sup>2</sup> with [[16/15]] as well as that a natural extension to prime 31 exists through {S31, S32}, which we will see is very accurate, but this itself suggests that an extension with prime 17 is reasonably accurate through tempering out [[1089/1088|S33]] so that a slightly sharp ~[[22/17]] is equated with the generator.
 
The aforementioned extension with prime 17 through tempering out [[1089/1088|S33]] is equivalent to the one by tempering out [[256/255|S16]] = [[256/255]] = ([[22/17]])/([[165/128]]).
 
Sensible uses the accurate mapping of prime 31 in sensipent, so that the sensible generator serves many roles in subgroup harmony, but it is not ~[[9/7]] or ~[[13/10]] which would incur more damage. Its [[S-expression]]-based comma list is {([[256/255|S16]], [[8019/8000|S9/S10]],) [[529/528|S23]], [[576/575|S24]], [[961/960|S31]], [[1024/1023|S32]], [[1089/1088|S33]]} implying also tempering out [[496/495]] = S31 × S32 and [[528/527]] = S32 × S33 as well as [[16337/16335]] = S31/S33 = ([[17/15|34/30]])/([[33/31]])<sup>2</sup> = ([[17/15]])/([[33/31]])<sup>2</sup>. A notable [[patent val]] tuning not appearing in the optimal ET sequence is [[157edo]].
 
[[Subgroup]]: 2.3.5.11
 
[[Comma list]]: 8019/8000, 16384/16335
 
{{Mapping|legend=1| 1 -1 -1 9 | 0 7 9 -15 }}
 
: mapping generators: ~2, ~128/99
 
{{Optimal ET sequence|legend=1| 19, 46, 65, 176, 241, 306 }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~128/99 = 443.115
 
[[Badness]] (Sintel): 0.728
 
==== 2.3.5.11.17 subgroup ====
 
[[Subgroup]]: 2.3.5.11.17
 
[[Comma list]]: 256/255, 1089/1088, 1377/1375
 
{{Mapping|legend=1| 1 -1 -1 9 10 | 0 7 9 -15 -16 }}
 
: mapping generators: ~2, ~22/17
 
{{Optimal ET sequence|legend=1| 19, 46, 65, 111, 176g }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~22/17 = 443.188
 
[[Badness]] (Sintel): 0.639
 
==== 2.3.5.11.17.23 subgroup ====
[[Subgroup]]: 2.3.5.11.17.23
 
[[Comma list]]: 256/255, 576/575, 1089/1088, 1377/1375
 
{{Mapping|legend=1| 1 -1 -1 9 10 6 | 0 7 9 -15 -16 -4 }}
 
{{Optimal ET sequence|legend=1| 19, 46, 65, 111, 176g }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~22/17 = 443.185
 
[[Badness]] (Sintel): 0.555
 
==== 2.3.5.11.17.23.31 subgroup ====
[[Subgroup]]: 2.3.5.11.17.23.31
 
[[Comma list]]: 256/255, 576/575, 961/960, 1089/1088, 1377/1375
 
{{Mapping|legend=1| 1 -1 -1 9 10 6 2 | 0 7 9 -15 -16 -4 8 }}
 
{{Optimal ET sequence|legend=1| 19, 46, 65, 111, 176g }}


[[POTE generator]]: 162/125 = 443.058
[[Optimal tuning]]s:
* [[CTE]]: 2/1 = 1\1, ~22/17 = 443.183
* [[CEE]]: 2/1 = 1\1, ~22/17 = 443.115


{{Val list|legend=1| 8, 19, 46, 65, 539, 604c, 669c, 734c, 799c, 864c, 929c }}
[[Badness]] (Sintel): 0.490


= Sensi =
== Sensi ==
{{Main| Sensi }}


{{main| Sensi }}
Sensi tempers out [[245/243]], [[686/675]] and [[4375/4374]] in addition to [[126/125]], and can be described as the 19 &amp; 27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. [[46edo]] is an excellent sensi tuning, and [[mos scale]]s of size 8, 11, 19 and 27 are available.


Sensi tempers out [[686/675]], [[245/243]] and [[4375/4374]] in addition to [[126/125]], and can be described as the 19&amp;27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as [[13-limit]] sensi tempers out 91/90. 22/17, in the middle, is even closer to the generator. [[46edo]] is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."
=== Septimal sensi ===
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 245/243
[[Comma list]]: 126/125, 245/243


[[Mapping]]: [{{val| 1 6 8 11 }}, {{val| 0 -7 -9 -13 }}]
{{Mapping|legend=1| 1-1 -1 -2 | 0 7 9 13 }}


Mapping generators: ~2, ~14/9
: mapping generators: ~2, ~9/7


{{Multival|legend=1| 7 9 13 -2 1 5 }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~9/7 = 443.3166
* [[POTE]]: ~2 = 1200.000, ~9/7 = 443.383


[[POTE generator]]: ~9/7 = 443.383
[[Minimax tuning]]:
* [[7-odd-limit]]: ~9/7 = {{monzo| 2/13 0 0 1/13 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7
* [[9-odd-limit]]: ~9/7 = {{monzo| 1/5 2/5 -1/5 0 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5


[[Minimax tuning]]:  
[[Tuning ranges of regular temperaments|Tuning ranges]]:  
* [[7-odd-limit]]
* 7-odd-limit [[diamond monotone]]: ~9/7 = [442.105, 450.000] (7\19 to 3\8)
: [{{monzo| 1 0 0 0 }}, {{monzo| 1/13 0 0 7/13 }}, {{monzo| 5/13 0 0 9/13 }}, {{monzo| 0 0 0 1 }}]
* 9-odd-limit diamond monotone: ~9/7 = [442.105, 444.444] (7\19 to 10\27)
: [[Eigenmonzo]]s: 2, 7
* 7-odd-limit [[diamond tradeoff]]: ~9/7 = [442.179, 445.628]
* [[9-odd-limit]]
* 9-odd-limit diamond tradeoff: ~9/7 = [435.084, 445.628]
: [{{monzo| 1 0 0 0 }}, {{monzo| 2/5 14/5 -7/5 0 }}, {{monzo| 4/5 18/5 -9/5 0 }}, {{monzo| 3/5 26/5 -13/5 0 }}]
: [[Eigenmonzo]]s: 2, 9/5


[[Algebraic generator]]: The real root of ''x''<sup>5</sup> + ''x''<sup>4</sup> - 4''x''<sup>2</sup> + ''x'' - 1, at 443.3783 cents.
[[Algebraic generator]]: The real root of ''x''<sup>5</sup> + ''x''<sup>4</sup> - 4''x''<sup>2</sup> + ''x'' - 1, at 443.3783 cents.


{{Val list|legend=1| 19, 27, 46, 157d, 203cd, 249cdd, 295ccdd }}
{{Optimal ET sequence|legend=1| 19, 27, 46 }}
 
[[Badness]]: 0.025622
 
==== 2.3.5.7.13 subgroup (sensation) ====
Subgroup: 2.3.5.7.13
 
Comma list: 91/90, 126/125, 169/168
 
Mapping: {{mapping| 1 -1 -1 -2 0| 0 7 9 13 10 }}
 
: mapping generators: ~2, ~9/7
 
Optimal tuning (CTE): ~2 = 1200.000, ~9/7 = 443.4016
 
{{Optimal ET sequence|legend=1| 19, 27, 46, 111df }}
 
=== Sensor ===
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 245/243, 385/384
 
Mapping: {{mapping| 1 -1 -1 -2 9 | 0 7 9 13 -15 }}
 
: mapping generators: ~2, ~9/7
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.2987
* POTE: ~2 = 1200.000, ~9/7 = 443.294
 
{{Optimal ET sequence|legend=1| 19, 27, 46, 111d }}
 
Badness: 0.037942
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 126/125, 169/168, 385/384
 
Mapping: {{mapping| 1 -1 -1 -2 9 0 | 0 7 9 13 -15 10 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.3658
* POTE: ~2 = 1200.000, ~9/7 = 443.321
 
{{Optimal ET sequence|legend=1| 19, 27, 46, 111df }}
 
Badness: 0.025575
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 91/90, 126/125, 154/153, 169/168, 256/255
 
Mapping: {{mapping| 1 -1 -1 -2 9 0 10 | 0 7 9 13 -15 10 -16 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.3775
* POTE: ~2 = 1200.000, ~9/7 = 443.365
 
{{Optimal ET sequence|legend=1| 19, 27, 46 }}
 
Badness: 0.022908
 
=== Sensus ===
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 176/175, 245/243
 
Mapping: {{mapping| 1 -1 -1 -2 -8| 0 7 9 13 31 }}
 
: mapping generators: ~2, ~9/7
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.4783
* POTE: ~2 = 1200.000, ~9/7 = 443.626
 
{{Optimal ET sequence|legend=1| 19e, 27e, 46, 119c }}
 
Badness: 0.029486
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 126/125, 169/168, 352/351
 
Mapping: {{mapping| 1 -1 -1 -2 -8 0 | 0 7 9 13 31 10 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.5075
* POTE: ~2 = 1200.000, ~9/7 = 443.559
 
{{Optimal ET sequence|legend=1| 19e, 27e, 46 }}
 
Badness: 0.020789
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 91/90, 126/125, 136/135, 154/153, 169/168
 
Mapping: {{mapping| 1 -1 -1 -2 -8 0 -7 | 0 7 9 13 31 10 30 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.5050
* POTE: ~2 = 1200.000, ~9/7 = 443.551
 
{{Optimal ET sequence|legend=1| 19eg, 27eg, 46 }}
 
Badness: 0.016238
 
=== Sensis ===
Subgroup: 2.3.5.7.11
 
Comma list: 56/55, 100/99, 245/243
 
Mapping: {{mapping| 1 -1 -1 -2 2| 0 7 9 13 4 }}
 
: mapping generators: ~2, ~9/7
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.1886
* POTE: ~2 = 1200.000, ~9/7 = 443.962
 
{{Optimal ET sequence|legend=1| 8d, 19, 27e }}
 
Badness: 0.028680
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 56/55, 78/77, 91/90, 100/99
 
Mapping: {{mapping| 1 -1 -1 -2 2 0 | 0 7 9 13 4 10 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.2863
* POTE: ~2 = 1200.000, ~9/7 = 443.945
 
{{Optimal ET sequence|legend=1| 8d, 19, 27e }}
 
Badness: 0.020017
 
=== Sensa ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 77/75, 99/98
 
Mapping: {{mapping| 1 -1 -1 -2 -1| 0 7 9 13 12 }}
 
: mapping generators: ~2, ~9/7
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.7814
* POTE: ~2 = 1200.000, ~9/7 = 443.518
 
{{Optimal ET sequence|legend=1| 8d, 19e, 27 }}
 
Badness: 0.036835
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 66/65, 77/75, 143/140
 
Mapping: {{mapping| 1 -1 -1 -2 -1 0 | 0 7 9 13 12 11}}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 443.7877
* POTE: ~2 = 1200.000, ~9/7 = 443.506
 
{{Optimal ET sequence|legend=1| 8d, 19e, 27 }}
 
Badness: 0.023258
 
=== Bisensi ===
Bisensi has a 1/2-octave period. Its ploidacot is diploid delta-heptacot (pergen (P8/2, ccP5/7)).
 
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 126/125, 245/243
 
Mapping:
* common form: {{mapping| 2 -2 -2 -4 1 | 0 7 9 13 8 }}
:: mapping generators: ~99/70, ~9/7
* mingen form: {{mapping| 2 5 7 9 9 | 0 -7 -9 -13 -8 }}
:: mapping generators: ~99/70, ~11/10
 
Optimal tunings:
* CTE: ~99/70 = 600.000, ~9/7 = 443.3688 (~11/10 = 156.6312)
* POTE: ~99/70 = 600.000, ~9/7 = 443.308 (~11/10 = 156.692)
 
{{Optimal ET sequence|legend=1| 8d, …, 38d, 46 }}
 
Badness: 0.041723
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 121/120, 126/125, 169/168
 
Mapping:
* common form: {{mapping| 2 -2 -2 -4 1 0 | 0 7 9 13 8 10}}
:: mapping generators: ~99/70, ~9/7
* mingen form: {{mapping| 2 5 7 9 9 10 | 0 -7 -9 -13 -8 -10 }}
:: mapping generators: ~99/70, ~11/10
 
Optimal tunings:
* CTE: ~55/39 = 600.000, ~9/7 = 443.4416, ~11/10 = 156.5584
* POTE: ~55/39 = 600.000, ~9/7 = 443.275, ~11/10 = 156.725
 
{{Optimal ET sequence|legend=1| 8d, …, 38df, 46 }}
 
Badness: 0.026339
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 91/90, 121/120, 126/125, 154/153, 169/168
 
Mapping:
* common form: {{mapping| 2 -2 -2 -4 1 0 3 | 0 7 9 13 8 10 7}}
:: mapping generators: ~99/70, ~9/7
* mingen form: {{mapping| 2 5 7 9 9 10 10 | 0 -7 -9 -13 -8 -10 -7 }}
:: mapping generators: ~99/70, ~11/10
 
Optimal tunings:
* CTE: ~17/12 = 600.000, ~9/7 = 443.4466 (~11/10 = 156.5534)
 
{{Optimal ET sequence|legend=1| 8d, …, 38df, 46 }}
 
Badness: 0.0188
 
=== Hemisensi ===
Hemisensi splits the ~9/7 generator in two, each for ~25/22. Its ploidacot is beta-tetradecacot (pergen (P8, ccP5/14)).
 
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 243/242, 245/242
 
Mapping: {{mapping| 1 -1 -1 -2 -3 | 0 14 18 26 35 }}
 
: mapping generators: ~2, ~25/22
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~25/22 = 221.5981
* POTE: ~2 = 1200.000, ~25/22 = 221.605
 
{{Optimal ET sequence|legend=1| 27e, 38d, 65 }}
 
Badness: 0.048714
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 126/125, 169/168, 243/242
 
Mapping: {{mapping| 1 -1 -1 -2 -3 0 | 0 14 18 26 35 20 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~25/22 = 221.6333
* POTE: ~2 = 1200.000, ~25/22 = 221.556
 
{{Optimal ET sequence|legend=1| 27e, 38df, 65f }}
 
Badness: 0.033016
 
== Sensei ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 225/224, 78732/78125
 
{{Mapping|legend=1| 1 -1 -1 -9 | 0 7 9 32 }}
 
: mapping generators: ~2, ~162/125
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~162/125 = 442.755
 
{{Optimal ET sequence|legend=1| 19, 65d, 84, 103, 187, 290b }}
 
[[Badness]]: 0.059218
 
== Warrior ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 5120/5103, 78732/78125
 
{{Mapping|legend=1| 1 -1 -1 15 | 0 7 9 -33 }}
 
: mapping generators: ~2, ~162/125
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~162/125 = 443.289
 
{{Optimal ET sequence|legend=1| 46, 111, 157, 268cd }}
 
[[Badness]]: 0.118239
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 176/175, 1331/1323, 5120/5103
 
Mapping: {{mapping| 1 -1 -1 15 9 | 0 7 9 -33 -15}}
 
: mapping generators: ~2, ~128/99
 
Optimal tuning (POTE): ~2 = 1200.000, ~128/99 = 443.274
 
{{Optimal ET sequence|legend=1| 46, 65d, 111, 268cd, 379cdd}}
 
Badness: 0.046383
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 176/175, 351/350, 847/845, 1331/1323
 
Mapping: {{mapping| 1 -1 -1 15 9 17| 0 7 9 -33 -15 -36}}
 
: mapping generators: ~2, ~84/65
 
Optimal tuning (POTE): ~2 = 1200.000, ~84/65 = 443.270
 
{{Optimal ET sequence|legend=1| 46, 65d, 111, 268cd, 379cddf}}
 
Badness: 0.028735
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 176/175, 256/255, 351/350, 442/441, 715/714
 
Mapping: {{mapping| 1 -1 -1 15 9 17 10| 0 7 9 -33 -15 -36 -16}}
 
: mapping generators: ~2, ~22/17
 
Optimal tuning (POTE): ~2 = 1200.000, ~22/17 = 443.270
 
{{Optimal ET sequence|legend=1| 46, 65d, 111, 268cdg, 379cddfg }}
 
Badness: 0.018105
 
== Bison ==
Bison has a 1/2-octave period. Its ploidacot is diploid delta-heptacot (pergen (P8/2, ccP5/7)). Related page: [[Bison/Eliora's Approach]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 78732/78125
 
[[Mapping]]:
* common form: {{mapping| 2 -2 -2 13 | 0 7 9 -10}}
:: mapping generators: ~567/400, ~162/125
* mingen form: {{mapping| 2 5 7 3 | 0 -7 -9 10 }}
:: mapping generators: ~567/400, ~35/32
 
[[Optimal tuning]] ([[POTE]]): ~567/400 = 600.000, ~162/125 = 443.075 (~35/32 = 156.925)
 
{{Optimal ET sequence|legend=1| 8, 38, 46, 84, 130 }}
 
[[Badness]]: 0.070375
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 6144/6125, 8019/8000
 
Mapping:
* common form: {{mapping| 2 -2 -2 13 18 | 0 7 9 -10 -15}}
:: mapping generators: ~567/400, ~162/125
* mingen form: {{mapping| 2 5 7 3 3 | 0 -7 -9 10 15 }}
:: mapping generators: ~567/400, ~35/32


[[Badness]]: 0.0256
Optimal tuning (POTE): ~99/70 = 600.000, ~162/125 = 443.117 (~35/32 = 156.883)


==Sensor==
{{Optimal ET sequence|legend=1| 46, 84, 130, 306, 436ce }}
[[Comma|Comma]]s: 126/125, 245/243, 385/384


[[POTE_tuning|POTE generator]]: ~9/7 = 443.294
Badness: 0.037132


[[Map|Map]]: [&lt;1 6 8 11 -6|, &lt;0 -7 -9 -13 15|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


[[EDO|EDO]]s: 19, 27, 46, 111d, 157d, 268cdd
Comma list: 351/350, 364/363, 441/440, 10985/10976


[[Badness|Badness]]: 0.0379
Mapping:
* common form: {{mapping| 2 -2 -2 13 18 17 | 0 7 9 -10 -15 -13 }}
:: mapping generators: ~55/39, ~162/125
* mingen form: {{mapping| 2 5 7 3 3 4 | 0 -7 -9 10 15 13 }}
:: mapping generators: ~55/39, ~35/32


===13-limit===
Optimal tuning (POTE): ~55/39 = 600.000, ~162/125 = 443.096 (~35/32 = 156.904)
[[Comma|Comma]]s: 91/90, 126/125, 169/168, 385/384


[[POTE_tuning|POTE generator]]: ~9/7 = 443.321
{{Optimal ET sequence|legend=1| 46, 84, 130, 566ce, 596cef }}


[[Map|Map]]: [&lt;1 6 8 11 -6 10|, &lt;0 -7 -9 -13 15 -10|]
Badness: 0.023504


[[EDO|EDO]]s: [[19edo|19]], [[27edo|27]], [[46edo|46]], [[111edo|111df]], [[157edo|157df]]
== Subpental ==
Subpental splits the generator ~14/9 in two. Its ploidacot is theta-tetradecacot (pergen (P8, c<sup>4</sup>P4/14)).


[[Badness|Badness]]: 0.0256
[[Subgroup]]: 2.3.5.7


==Sensis==
[[Comma list]]: 3136/3125, 19683/19600
[[Comma|Comma]]s: 56/55, 100/99, 245/243


[[POTE_tuning|POTE generator]]: 443.962
{{Mapping|legend=1| 1 6 8 17 | 0 -14 -18 -45 }}


[[Map|Map]]: [&lt;1 6 8 11 6|, &lt;0 -7 -9 -13 -4|]
: mapping generators: ~2, ~56/45


[[EDO|EDO]]s: [[19edo|19]], [[27edo|27e]], [[73edo|73ee]]
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~56/45 = 378.467


[[Badness|Badness]]: 0.0287
{{Optimal ET sequence|legend=1| 19, 111, 130, 929c, 1059c, 1189bc, 1319bc }}


===13-limit===
[[Badness]]: 0.054303
[[Comma|Comma]]s: 56/55, 78/77, 91/90, 100/99


[[POTE_tuning|POTE generator]]: 443.945
=== 11-limit ===
Subgroup: 2.3.5.7.11


[[Map|Map]]: [&lt;1 6 8 11 6 10|, &lt;0 -7 -9 -13 -4 -10|]
Comma list: 540/539, 3136/3125, 8019/8000


[[EDO|EDO]]s: 19, 27e, 46e, 73ee
Mapping: {{mapping| 1 6 8 17 -6 | 0 -14 -18 -45 30 }}


[[Badness|Badness]]: 0.0200
Optimal tuning (POTE): ~2 = 1200.000, ~56/45 = 378.440


==Sensus==
{{Optimal ET sequence|legend=1| 19, 111, 130, 241, 371ce, 501cde, 872cde }}
[[Comma|Comma]]s: 126/125, 176/175, 245/243


[[POTE_generator|POTE generator]]: ~9/7 = 443.626
Badness: 0.045352


[[Map|Map]]: [&lt;1 6 8 11 23|, &lt;0 -7 -9 -13 -31|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


[[EDO|EDO]]s: 19e, 27e, 46, 119c, 165c
Comma list: 351/350, 540/539, 676/675, 3136/3125


[[Badness|Badness]]: 0.0295
Mapping: {{mapping| 1 6 8 17 -6 16 | 0 -14 -18 -45 30 -39 }}


===13-limit===
Optimal tuning (POTE): ~2 = 1200.000, ~56/45 = 378.437
[[Comma|Comma]]s: 91/90, 126/125, 169/168, 352/351


[[POTE_generator|POTE generator]]: ~9/7 = 443.559
{{Optimal ET sequence|legend=1| 19, 111, 130, 241, 371ce }}


[[Map|Map]]: [&lt;1 6 8 11 23 10|, &lt;0 -7 -9 -13 -31 -10|]
Badness: 0.023940


[[EDO|EDO]]s: 19e, 27e, 46, 165cf, 211bccf, 257bccff, [[303edo|303bccdff]]
== Heinz ==
Heinz splits the generator ~18/7 in three. Its ploidacot is theta-21-cot (pergen (P8, c<sup>9</sup>P5/21)). A notable tuning of heinz not shown below for those who like [[19edo]]'s representation of the [[5-limit]] is [[57edo]] (57 = 103 - 46).


[[Badness|Badness]]: 0.0208
[[Subgroup]]: 2.3.5.7


See [[Chords_of_sensus|Chords of sensus]] for a listing of chords.
[[Comma list]]: 1029/1024, 78732/78125


==Sensa==
{{Mapping|legend=1| 1 -8 -10 6| 0 21 27 -7 }}
Commas: 55/54, 77/75, 99/98


POTE generator: ~9/7 = 443.518
: mapping generators: ~2, ~48/35


Map: [&lt;1 6 8 11 11|, &lt;0 -7 -9 -13 -12|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~48/35 = 546.815


EDOs: 19e, 27, 46ee
{{Optimal ET sequence|legend=1| 46, 103, 149, 699bdd }}


Badness: 0.0368
[[Badness]]: 0.115385


===13-limit===
=== 11-limit ===
Commas: 55/54, 66/65, 77/75, 143/140
Subgroup: 2.3.5.7.11


POTE generator: ~9/7 = 443.506
Comma list: 385/384, 441/440, 78732/78125


Map: [&lt;1 6 8 11 11 10|, &lt;0 -7 -9 -13 -12 -11|]
{{Mapping|legend=1| 1 -8 -10 6 3 | 0 21 27 -7 1}}


EDOs: 19e, 27, 46ee
: mapping generators: ~2, ~11/8


Badness: 0.0233
Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.631


=Hemisensi=
{{Optimal ET sequence|legend=1| 46, 103, 149, 252e, 401bdee }}
Commas: 126/125, 243/242, 245/242


POTE generator: ~25/22 = 221.605
Badness: 0.042412


Map: [&lt;1 13 17 24 32|, &lt;0 -14 -18 -26 -35|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


EDOs: 27e, 65, 157de, 222cde
Comma list: 351/350, 385/384, 441/440, 847/845


Badness: 0.0487
{{Mapping|legend=1| 1 -8 -10 6 3 11 | 0 21 27 -7 1 -16}}


=Sensei=
Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.629
Commas: 225/224, 78732/78125


POTE generator: ~125/81 = 757.245
{{Optimal ET sequence|legend=1| 46, 103, 149, 252ef, 401bdeef }}


Map: [&lt;1 6 8 23|, &lt;0 -7 -9 -32|]
Badness: 0.025779


Wedgie: &lt;&lt;7 9 32 -2 31 49||
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


EDOs: 19, 84, 103, 187, 290b
Comma list: 273/272, 351/350, 385/384, 441/440, 847/845


Badness: 0.0592
{{Mapping|legend=1| 1 -8 -10 6 3 11 5 | 0 21 27 -7 1 -16 -2}}


=Bison=
Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.635
Commas: 6144/6125, 78732/78125


POTE generator: ~35/32 = 156.925
{{Optimal ET sequence|legend=1| 46, 103, 149, 252ef, 401bdeef }}


Map: [&lt;2 5 7 3|, &lt;0 -7 -9 10|]
Badness: 0.018479


Wedgie: &lt;&lt;14 18 -20 -4 -71 -97||
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


EDOs: 8, 38, 46, 84, 130
Comma list: 171/170, 209/208, 351/350, 385/384, 441/440, 969/968


Badness: 0.0704
{{Mapping|legend=1| 1 -8 -10 6 3 11 5 12 | 0 21 27 -7 1 -16 -2 -17}}


==11-limit==
Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.614
Commas: 441/440, 6144/6125, 8019/8000


POTE generator: ~35/32 = 156.883
{{Optimal ET sequence|legend=1| 46, 103h, 149h, 252efhh }}


Map: [&lt;2 5 7 3 3|, &lt;0 -7 -9 10 15|]
Badness: 0.019005


EDOs: 46, 84, 130, 306, 436ce
== Trisensory ==
Trisensory has 1/3-octave period. Its ploidacot is triploid digamma-heptacot (pergen (P8/3, M6/21)).


Badness: 0.0371
[[Subgroup]]: 2.3.5.7


==13-limit==
[[Comma list]]: 1728/1715, 78732/78125
Commas: 351/350, 364/363, 441/440, 10985/10976


POTE generator: ~35/32 = 156.904
{{Mapping|legend=1| 3 4 6 8 | 0 7 9 4 }}


Map: [&lt;2 5 7 3 3 4|, &lt;0 -7 -9 10 15 13|]
: mapping generators: ~63/50, ~36/35


EDOs: 46, 84, 130, 566ce, 596cef
[[Optimal tuning]] ([[POTE]]): ~63/50 = 400.000, ~36/35 = 43.147


Badness: 0.0235
{{Optimal ET sequence|legend=1| 27, 57, 84, 111, 195d, 306d }}


=Heinz=
[[Badness]]: 0.089740
[[Comma|Comma]]s: 78732/78125, 1029/1024


[[POTE_generator|POTE generator]]: ~48/35 = 546.815
=== 11-limit ===
Subgroup: 2.3.5.7.11


[[Map|Map]]: [&lt;1 13 17 -1|, &lt;0 -21 -27 7|]
Comma list: 176/175, 540/539, 78732/78125


[[EDO|EDO]]s: [[46edo|46]], [[103edo|103]], [[149edo|149]], [[699edo|699bd]]
Mapping: {{mapping| 3 4 6 8 8 | 0 7 9 4 22 }}


[[Badness|Badness]]: 0.1154
Optimal tuning (POTE): ~63/50 = 400.000, ~36/35 = 43.292


==11-limit==
{{Optimal ET sequence|legend=1| 27e, 84e, 111 }}
[[Comma|Comma]]s: 385/384, 441/440, 88208/87500


[[POTE_generator|POTE generator]]: ~11/8 = 547.631
Badness: 0.058413


[[Map|Map]]: [&lt;1 13 17 -1 4|, &lt;0 -21 -27 7 -1|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


[[EDO|EDO]]s: 46, 103, 149
Comma list: 176/175, 351/350, 540/539, 9295/9261


[[Badness|Badness]]: 0.0424
Mapping: {{mapping| 3 4 6 8 8 11 | 0 7 9 4 22 1 }}


==13-limit==
: mapping generators: ~49/39, ~36/35
[[Comma|Comma]]s: 351/350, 385/384, 441/440, 847/845


[[POTE_generator|POTE generator]]: ~11/8 = 547.629
Optimal tuning (POTE): ~49/39 = 400.000, ~36/35 = 43.288


[[Map|Map]]: [&lt;1 13 17 -1 4 -5|, &lt;0 -21 -27 7 -1 16|]
{{Optimal ET sequence|legend=1| 27e, 84e, 111 }}


[[EDO|EDO]]s: 46, 57, 103, 149, 252e, 401bde
Badness: 0.034829


[[Badness|Badness]]: 0.0258
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


==17-limit==
Comma list: 176/175, 351/350, 442/441, 540/539, 715/714
[[Comma|Comma]]s: 273/272, 351/350, 385/384, 441/440, 847/845


[[POTE_generator|POTE generator]]: ~11/8 = 547.635
Mapping: {{mapping| 3 4 6 8 8 11 10 | 0 7 9 4 22 1 21 }}


[[Map|Map]]: [&lt;1 13 17 -1 4 -5 3|, &lt;0 -21 -27 7 -1 16 2|]
Optimal tuning (POTE): ~49/39 = 400.000, ~36/35 = 43.276


[[EDO|EDO]]s: 46, 103, 149, [[252edo|252ef]], [[401edo|401bdef]]
{{Optimal ET sequence|legend=1| 27eg, 84e, 111 }}


[[Badness|Badness]]: 0.0185
Badness: 0.024120


==19-limit==
=== 19-limit ===
[[Comma|Comma]]s: 171/170, 209/208, 351/350, 385/384, 441/440, 969/968
Subgroup: 2.3.5.7.11.13.17.19


[[POTE_generator|POTE generator]]: ~11/8 = 547.614
Comma list: 176/175, 286/285, 324/323, 351/350, 400/399, 476/475


[[Map|Map]]: [&lt;1 13 17 -1 4 -5 3 -5|, &lt;0 -21 -27 7 -1 16 2 17|]
Mapping: {{mapping| 3 4 6 8 8 11 10 12 | 0 7 9 4 22 1 21 7 }}


[[EDO|EDO]]s: 46, 103h, 149h, 252efh
Optimal tuning (POTE): ~49/39 = 400.000, ~36/35 = 43.292


[[Badness|Badness]]: 0.0190
{{Optimal ET sequence|legend=1| 27eg, 84e, 111 }}


Badness: 0.018466


[[Category:Regular temperament theory]]
[[Category:Temperament families]]
[[Category:Temperament family]]
[[Category:Pages with mostly numerical content]]
[[Category:Sensipent]]
[[Category:Sensipent family| ]] <!-- main article -->
[[Category:Sensi]]
[[Category:Rank 2]]
[[Category:Rank 2]]