24edf: Difference between revisions
Created page with "'''Division of the just perfect fifth into 24 equal parts''' (24EDF) is related to 41 edo, but with the 3/2 rather than the 2/1 being just. The octave is abo..." Tags: Mobile edit Mobile web edit |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
24edf is related to [[41edo]], but with the 3/2 rather than the [[2/1]] being just. The octave is about 0.8269 cents compressed. Like 41edo, 24edf is [[consistent]] to the [[integer limit|16-integer-limit]]. | |||
[[ | === Harmonics === | ||
[[Category: | {{Harmonics in equal|24|3|2|intervals=integer}} | ||
{{Harmonics in equal|24|3|2|intervals=integer|columns=12|start=12|collapsed=true|Approximation of harmonics in 65edt (continued)}} | |||
=== Subsets and supersets === | |||
24edt is the 6th [[highly composite equal division|highly composite edt]]. Its nontrivial subsets are {{EDs|equave=t| 2, 3, 4, 6, 8, and 12 }}. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2" | |||
|+ Intervals of 24edf | |||
|- | |||
! # | |||
! Cents | |||
! Approximate ratios | |||
|- | |||
| 0 | |||
| 0.0 | |||
| [[1/1]] | |||
|- | |||
| 1 | |||
| 29.2 | |||
| [[49/48]], [[50/49]], [[64/63]], [[81/80]] | |||
|- | |||
| 2 | |||
| 58.5 | |||
| [[25/24]], [[28/27]], [[33/32]], [[36/35]] | |||
|- | |||
| 3 | |||
| 87.7 | |||
| [[19/18]], [[20/19]], [[21/20]], [[22/21]] | |||
|- | |||
| 4 | |||
| 117.0 | |||
| [[14/13]], [[15/14]], [[16/15]] | |||
|- | |||
| 5 | |||
| 146.2 | |||
| [[12/11]], [[13/12]] | |||
|- | |||
| 6 | |||
| 175.5 | |||
| [[10/9]], [[11/10]], [[21/19]] | |||
|- | |||
| 7 | |||
| 204.7 | |||
| [[9/8]] | |||
|- | |||
| 8 | |||
| 234.0 | |||
| [[8/7]], [[15/13]] | |||
|- | |||
| 9 | |||
| 263.2 | |||
| [[7/6]], [[22/19]] | |||
|- | |||
| 10 | |||
| 292.5 | |||
| [[13/11]], [[19/16]], [[32/27]] | |||
|- | |||
| 11 | |||
| 321.7 | |||
| [[6/5]] | |||
|- | |||
| 12 | |||
| 351.0 | |||
| [[11/9]], [[16/13]] | |||
|- | |||
| 13 | |||
| 380.2 | |||
| [[5/4]], [[26/21]] | |||
|- | |||
| 14 | |||
| 409.5 | |||
| [[14/11]], [[19/15]], [[24/19]] | |||
|- | |||
| 15 | |||
| 438.7 | |||
| [[9/7]], [[32/25]] | |||
|- | |||
| 16 | |||
| 468.0 | |||
| [[21/16]], [[13/10]] | |||
|- | |||
| 17 | |||
| 497.2 | |||
| [[4/3]] | |||
|- | |||
| 18 | |||
| 526.5 | |||
| [[15/11]], [[19/14]], [[27/20]] | |||
|- | |||
| 19 | |||
| 556.7 | |||
| [[11/8]], [[18/13]], [[26/19]] | |||
|- | |||
| 20 | |||
| 585.0 | |||
| [[7/5]], [[45/32]] | |||
|- | |||
| 21 | |||
| 614.2 | |||
| [[10/7]], [[64/45]] | |||
|- | |||
| 22 | |||
| 643.5 | |||
| [[13/9]], [[16/11]], [[19/13]] | |||
|- | |||
| 23 | |||
| 671.7 | |||
| [[22/15]], [[28/19]], [[40/27]] | |||
|- | |||
| 24 | |||
| 702.0 | |||
| [[3/2]] | |||
|- | |||
| 25 | |||
| 731.2 | |||
| [[20/13]], [[32/21]] | |||
|- | |||
| 26 | |||
| 760.5 | |||
| [[14/9]], [[25/16]] | |||
|- | |||
| 27 | |||
| 789.7 | |||
| [[11/7]], [[19/12]], [[30/19]] | |||
|- | |||
| 28 | |||
| 818.9 | |||
| [[8/5]] | |||
|- | |||
| 29 | |||
| 848.2 | |||
| [[13/8]], [[18/11]] | |||
|- | |||
| 30 | |||
| 877.4 | |||
| [[5/3]] | |||
|- | |||
| 31 | |||
| 906.7 | |||
| [[22/13]], [[27/16]], [[32/19]] | |||
|- | |||
| 32 | |||
| 935.9 | |||
| [[12/7]], [[19/11]] | |||
|- | |||
| 33 | |||
| 965.2 | |||
| [[7/4]], [[26/15]] | |||
|- | |||
| 34 | |||
| 994.4 | |||
| [[16/9]] | |||
|- | |||
| 35 | |||
| 1023.7 | |||
| [[9/5]] | |||
|- | |||
| 36 | |||
| 1052.9 | |||
| [[11/6]] | |||
|- | |||
| 37 | |||
| 1082.2 | |||
| [[13/7]], [[15/8]] | |||
|- | |||
| 38 | |||
| 1111.4 | |||
| [[19/10]], [[21/11]] | |||
|- | |||
| 39 | |||
| 1140.7 | |||
| [[27/14]], [[35/18]] | |||
|- | |||
| 40 | |||
| 1169.9 | |||
| [[49/25]], [[56/28]], [[63/32]] | |||
|- | |||
| 41 | |||
| 1199.2 | |||
| 2/1 | |||
|- | |||
| 42 | |||
| 1228.4 | |||
| [[45/22]], [[49/24]], [[55/27]], [[81/40]] | |||
|- | |||
| 43 | |||
| 1257.7 | |||
| [[25/12]], [[33/16]] | |||
|- | |||
| 44 | |||
| 1286.9 | |||
| [[19/9]], [[21/10]] | |||
|- | |||
| 45 | |||
| 1316.2 | |||
| [[15/7]] | |||
|- | |||
| 46 | |||
| 1345.4 | |||
| [[13/6]] | |||
|- | |||
| 47 | |||
| 1374.7 | |||
| [[11/5]] | |||
|- | |||
| 48 | |||
| 1403.9 | |||
| [[9/4]] | |||
|} | |||
== See also == | |||
* [[41edo]] – relative edo | |||
* [[65edt]] – relative edt | |||
* [[95ed5]] – relative ed5 | |||
* [[106ed6]] – relative ed6 | |||
* [[147ed12]] – relative ed12 | |||
* [[361ed448]] – close to the zeta-optimized tuning for 41edo | |||
[[Category:41edo]] |