81/80: Difference between revisions

m Didymus is not the same as Didymus'. Misc. cleanup
m Text replacement - "yntonism" to "yntonoschism"
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Interwiki
| en = 81/80
| de = 81/80
}}
{{Infobox Interval
{{Infobox Interval
| Name = syntonic comma, Didymus' comma, meantone comma, Ptolemaic comma
| Name = syntonic comma, Didymus' comma, meantone comma, Ptolemaic comma
Line 9: Line 13:
The '''syntonic comma''', also known as the '''Didymus' comma''', the '''meantone comma''' or the '''Ptolemaic comma''', with a frequency ratio '''81/80''', is helpful for comparing [[3-limit]] and [[5-limit]] [[just intonation]]. Adding or subtracting this comma to/from any 3-limit [[ratio]] with an [[odd limit]] of 27 or higher creates a 5-limit ratio with a much lower odd-limit. Thus potentially dissonant 3-limit harmonies can often be sweetened via a commatic adjustment. However, adding/subtracting this comma to/from any 3-limit ratio of odd limit 3 or less (the 4th, 5th or 8ve), creates a wolf interval of odd limit 27 or higher. Any attempt to tune a fixed-pitch instrument (e.g. guitar or piano) to 5-limit just intonation will create such wolves, thus, for those who have no interest or desire to utilize such wolves in composition, [[tempering out]] 81/80 is desirable. This gives a tuning for the [[tone|whole tone]] which is intermediate between 10/9 and 9/8, and leads to [[meantone|meantone temperament]], hence the name meantone comma.  
The '''syntonic comma''', also known as the '''Didymus' comma''', the '''meantone comma''' or the '''Ptolemaic comma''', with a frequency ratio '''81/80''', is helpful for comparing [[3-limit]] and [[5-limit]] [[just intonation]]. Adding or subtracting this comma to/from any 3-limit [[ratio]] with an [[odd limit]] of 27 or higher creates a 5-limit ratio with a much lower odd-limit. Thus potentially dissonant 3-limit harmonies can often be sweetened via a commatic adjustment. However, adding/subtracting this comma to/from any 3-limit ratio of odd limit 3 or less (the 4th, 5th or 8ve), creates a wolf interval of odd limit 27 or higher. Any attempt to tune a fixed-pitch instrument (e.g. guitar or piano) to 5-limit just intonation will create such wolves, thus, for those who have no interest or desire to utilize such wolves in composition, [[tempering out]] 81/80 is desirable. This gives a tuning for the [[tone|whole tone]] which is intermediate between 10/9 and 9/8, and leads to [[meantone|meantone temperament]], hence the name meantone comma.  


81/80 is the smallest [[superparticular]] interval which belongs to the [[5-limit]]. Like [[16/15]], [[625/624]], [[2401/2400]] and [[4096/4095]] it has a fourth power as a numerator. Fourth powers are squares, and any superparticular comma with a square numerator is the ratio between two wider successive superparticular intervals, because ''n''<sup>2</sup>/(''n''<sup>2</sup> - 1) = ''n''/(''n'' - 1) ÷ (''n'' + 1)/''n'' (which is to say 81/80 is a [[square superparticular]]). 81/80 is in fact the difference between [[10/9]] and [[9/8]], the product of which is the just major third, [[5/4]]. That the numerator is a fourth power entails that the wider of these two intervals itself has a square numerator; 9/8 is the interval between the successive superparticulars 4/3 and 3/2.
81/80 is the smallest [[superparticular]] interval which belongs to the [[5-limit]]. Like [[16/15]], [[625/624]], [[2401/2400]] and [[4096/4095]] it has a fourth power as a numerator. Fourth powers are squares, and any superparticular comma with a square numerator is the ratio between two wider successive superparticular intervals, because {{nowrap|''n''<sup>2</sup>/(''n''<sup>2</sup> 1) {{=}} ''n''/(''n'' 1) ÷ (''n'' + 1)/''n''}} (which is to say 81/80 is a [[square superparticular]]). 81/80 is in fact the difference between [[10/9]] and [[9/8]], the product of which is the just major third, [[5/4]]. That the numerator is a fourth power entails that the wider of these two intervals itself has a square numerator; 9/8 is the interval between the successive superparticulars 4/3 and 3/2.
 
== Use in recorded music ==
[https://youtu.be/DO7yTiM-YJk?si=e4wVU4IlbITCAaNG&t=325 This passage] from [[Ben Johnston]]'s 9th string quartet, near the end of movement 1, makes a sudden and prominent use of the 81/80 comma, which demonstrates how a simple progression with held common tones can quickly lead to severe interference [[Beat|beating]], rupturing the diatonic collection routinely associated with the [[5-limit]] and exposing "C major" as anything but simple.


[[Monroe Golden]]'s ''Incongruity'' uses just-intonation chord progressions that exploit this comma<ref>[http://untwelve.org/interviews/golden UnTwelve's interview to Monroe Golden]</ref>.
[[Monroe Golden]]'s ''Incongruity'' uses just-intonation chord progressions that exploit this comma<ref>[http://untwelve.org/interviews/golden UnTwelve's interview to Monroe Golden]</ref>.
[https://x.com/its_adamneely/status/1249700624003989508 Adam Neely's harmonization] of ''the licc'' pumps upward by 81/80 every measure. After 9 iterations, D modulates nearly to E.


== Temperaments ==
== Temperaments ==
Line 17: Line 26:


== Relations to other 5-limit intervals ==
== Relations to other 5-limit intervals ==
[[81/80]] is the difference between a large number of intervals of the 5-limit, so that if tempered, it simplifies the structure of the 5-limit drastically. For some differences in higher limits, see [[#Relations to other superparticular ratios]]. A few important ones are that 81/80 is:
81/80 is the difference between a large number of intervals of the 5-limit, so that if tempered, it simplifies the structure of the 5-limit drastically. For some differences in higher limits, see [[#Relations to other superparticular ratios]]. A few important ones are that 81/80 is:
* The amount by which [[2187/2048]] exceeds [[135/128]].
* The amount by which [[2187/2048]] exceeds [[135/128]].
* The amount by which [[25/24]] exceeds [[250/243]].
* The amount by which [[25/24]] exceeds [[250/243]].
Line 28: Line 37:
If one wants to treat the syntonic comma as a musical interval in its own right as opposed to tempering it out, one can easily use it in melodies as either an {{w|appoggiatura}}, an {{w|acciaccatura}}, or a quick passing tone. It is also very easy to exploit in [[comma pump]] modulations, as among the [[Meantone comma pump examples|known examples]] of this kind of thing are familiar-sounding chord progressions.  Furthermore, not tempering out 81/80 both allows wolf intervals like [[40/27]] and [[27/20]] to be deliberately exploited as dissonances to be resolved, and it also allows one to contrast intervals like 5/4 and [[81/64]]. The [[barium]] temperament exploits the comma by setting it equal to exactly 1/56th of the octave.
If one wants to treat the syntonic comma as a musical interval in its own right as opposed to tempering it out, one can easily use it in melodies as either an {{w|appoggiatura}}, an {{w|acciaccatura}}, or a quick passing tone. It is also very easy to exploit in [[comma pump]] modulations, as among the [[Meantone comma pump examples|known examples]] of this kind of thing are familiar-sounding chord progressions.  Furthermore, not tempering out 81/80 both allows wolf intervals like [[40/27]] and [[27/20]] to be deliberately exploited as dissonances to be resolved, and it also allows one to contrast intervals like 5/4 and [[81/64]]. The [[barium]] temperament exploits the comma by setting it equal to exactly 1/56th of the octave.


== Sagittal notation ==
== Notation ==
In the [[Sagittal]] system, the downward version of this comma (possibly tempered) is represented by the sagittal {{sagittal | \! }} and is called the '''5 comma''', or '''5C''' for short, because the simplest interval it notates is 5/1 (equiv. 5/4), as for example in C-E{{nbhsp}}{{sagittal | \! }}. The upward version is called '''1/5C''' or '''5C up''' and is represented by {{sagittal| /| }}.
This interval is significant in the [[Functional Just System]] and [[Helmholtz-Ellis notation]] as the classical (5-limit) formal comma which translates a Pythagorean interval to a nearby classical interval.
 
=== Ben Johnston's notation ===
In [[Ben Johnston's notation]], this interval is denoted with "+" and its reciprocal with "-".
 
=== Sagittal notation ===
In the [[Sagittal]] system, the downward version of this comma (possibly tempered) is represented by the sagittal {{sagittal | \! }} and is called the '''5 comma''', or '''5C''' for short, because the simplest interval it notates is 5/1 (equiv. 5/4), as for example in C–E{{nbhsp}}{{sagittal | \! }}. The upward version is called '''1/5C''' or '''5C up''' and is represented by {{sagittal| /| }}.


== Relations to other superparticular ratios ==
== Relations to other superparticular ratios ==
Line 151: Line 166:
* [[40/27]] – its [[fifth complement]]
* [[40/27]] – its [[fifth complement]]
* [[1ed81/80]] – its equal multiplication
* [[1ed81/80]] – its equal multiplication
* [[Syntonisma]], the difference by which a stack of seven 81/80s falls short of [[12/11]]
* [[Syntonoschisma]], the difference by which a stack of seven 81/80s falls short of [[12/11]]
* [[Mercator's comma]]
* [[Mercator's comma]]
* [[Pythagorean comma]]
* [[Pythagorean comma]]
Line 163: Line 178:
[[Category:Commas named after polymaths]]
[[Category:Commas named after polymaths]]
[[Category:Commas named for the intervals they stack]]
[[Category:Commas named for the intervals they stack]]
<!-- interwiki -->
[[https://de.xen.wiki/w/81/80]]