383edo: Difference between revisions

+countertertiaschis
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|"
 
(9 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 383 (prime)
{{ED intro}}
| Step size = 3.13316¢
| Fifth = 224\383 (701.83¢)
| Semitones = 36:29 (112.79¢ : 90.86¢)
| Consistency = 15
}}
The '''383 equal divisions of the octave''' ('''383edo'''), or the '''383(-tone) equal temperament''' ('''383tet''', '''383et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 383 parts of about 3.13 [[cent]]s each.


== Theory ==
== Theory ==
383edo is distinctly [[consistent]] through the [[15-odd-limit]] with a flat tendency. It tempers out 32805/32768 ([[schisma]]) in the 5-limit; [[2401/2400]] in the 7-limit; [[6250/6237]], [[4000/3993]] and [[3025/3024]] in the 11-limit; and [[625/624]], [[1575/1573]] and [[2080/2079]] in the 13-limit. It provides the [[optimal patent val]] for the [[countertertiaschis]] temperament, and a good tuning for [[sesquiquartififths]] in the higher limit.
383edo is [[consistency|distinctly consistent]] through the [[15-odd-limit]] with a flat tendency. As an equal temperament, it [[tempering out|tempers out]] 32805/32768 ([[schisma]]) in the [[5-limit]]; [[2401/2400]] in the [[7-limit]]; [[3025/3024]], [[4000/3993]] and [[6250/6237]] in the [[11-limit]]; and [[625/624]], [[1575/1573]] and [[2080/2079]] in the [[13-limit]]. It provides the [[optimal patent val]] for the [[countertertiaschis]] temperament, and a good tuning for [[sesquiquartififths]] in the higher limits.


=== Prime harmonics ===
{{Harmonics in equal|383}}
=== Subsets and supersets ===
383edo is the 76th [[prime edo]].
383edo is the 76th [[prime edo]].
=== Prime harmonics ===
{{Harmonics in equal|383|columns=11}}


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 29: Line 25:
| 2.3
| 2.3
| {{monzo| -607 383 }}
| {{monzo| -607 383 }}
| [{{val| 383 607 }}]
| {{mapping| 383 607 }}
| +0.0402
| +0.0402
| 0.0402
| 0.0402
Line 36: Line 32:
| 2.3.5
| 2.3.5
| 32805/32768, {{monzo| -8 -55 41}}
| 32805/32768, {{monzo| -8 -55 41}}
| [{{val| 383 607 889 }}]
| {{mapping| 383 607 889 }}
| +0.1610
| +0.1610
| 0.1741
| 0.1741
Line 43: Line 39:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 32805/32768, 68359375/68024448
| 2401/2400, 32805/32768, 68359375/68024448
| [{{val| 383 607 889 1075 }}]
| {{mapping| 383 607 889 1075 }}
| +0.1813
| +0.1813
| 0.1548
| 0.1548
Line 50: Line 46:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3025/3024, 4000/3993, 32805/32768
| 2401/2400, 3025/3024, 4000/3993, 32805/32768
| [{{val| 383 607 889 1075 1325 }}]
| {{mapping| 383 607 889 1075 1325 }}
| +0.1382
| +0.1382
| 0.1631
| 0.1631
Line 57: Line 53:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 625/624, 1575/1573, 2080/2079, 2401/2400, 10985/10976
| 625/624, 1575/1573, 2080/2079, 2401/2400, 10985/10976
| [{{val| 383 607 889 1075 1325 1417 }}]
| {{mapping| 383 607 889 1075 1325 1417 }}
| +0.1531
| +0.1531
| 0.1525
| 0.1525
Line 65: Line 61:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per Octave
|-
! Generator<br>(Reduced)
! Periods<br />per 8ve
! Cents<br>(Reduced)
! Generator*
! Associated<br>Ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 94: Line 91:
| 498.17
| 498.17
| 4/3
| 4/3
| [[Helmholtz]]
| [[Helmholtz (temperament)|Helmholtz]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
== Music ==
; [[Francium]]
* "Mark A Player" from ''I Want To'' (2025) – [https://open.spotify.com/track/1M3LmqPfXRjpxuuTRgEufN Spotify] | [https://francium223.bandcamp.com/track/mark-a-player Bandcamp] | [https://www.youtube.com/watch?v=ePR_S5cNZvI YouTube] – in Marconic, 383edo tuning


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Prime EDO]]
[[Category:Countertertiaschis]]
[[Category:Countertertiaschis]]