248edo: Difference between revisions

+RTT table and rank-2 temperaments
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|"
 
(11 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{EDO intro|248}}
{{Infobox ET}}
{{ED intro}}


== Theory ==
== Theory ==
248et tempers out [[32805/32768]] in the 5-limit; [[3136/3125]] and [[420175/419904]] in the 7-limit; [[441/440]], [[8019/8000]] in the 11-limit; [[729/728]], [[847/845]], [[1001/1000]], [[1575/1573]] and [[2200/2197]] in the 13-limit. It also notably tempers out the [[quartisma]].  
248edo shares the mapping of [[harmonic]]s [[5/1|5]] and [[7/1|7]] with [[31edo]]. It has a decent 13-limit interpretation despite not being [[consistent]]. The equal temperament [[tempering out|tempers out]] [[32805/32768]] in the 5-limit; [[3136/3125]] and [[420175/419904]] in the 7-limit; [[441/440]], [[8019/8000]] in the 11-limit; [[729/728]], [[847/845]], [[1001/1000]], [[1575/1573]] and [[2200/2197]] in the 13-limit. It also notably tempers out the [[quartisma]]. 248edo, additionally, has the interesting property of its mapping for all prime harmonics 3 to 23 being a multiple of 3, and therefore derived from [[131edt]]. Similarly, using the lower-error 248[[Wart notation|h]] val, the mappings of all its [[2.5.7_subgroup|no-3]] harmonics up to [[23-limit|28]] are multiples of 2 and derived from [[124edo]].


It [[support]]s [[Schismatic family #Bischismic|bischismic temperament]], providing the [[optimal patent val]] for 11-limit bischismic, and excellent tunings in the 7- and 13-limits. It also provides the optimal patent val for [[Varunismic temperaments #Essence|essence temperament]]. It is notable for its combination of precise intonation with an abundance of essentially tempered chords. 248 has divisors 2, 4, 8, 31, 62, and 124.
It [[support]]s the [[bischismic]] temperament, providing the [[optimal patent val]] for 11-limit bischismic, and excellent tunings in the 7- and 13-limits. It also provides the optimal patent val for the [[essence]] temperament. It is notable for its combination of precise intonation with an abundance of essentially tempered chords.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|248|}}
{{Harmonics in equal|248|}}
=== Subsets and supersets ===
Since 248 factors into {{factorization|248}}, 248edo has subset edos {{EDOs| 2, 4, 8, 31, 62, and 124 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 22: Line 27:
| 2.3
| 2.3
| {{monzo| 287 -181 }}
| {{monzo| 287 -181 }}
| [{{val| 248 393 }}]
| {{mapping| 248 393 }}
| +0.108
| +0.108
| 0.108
| 0.108
Line 29: Line 34:
| 2.3.5
| 2.3.5
| 32805/32768, {{monzo| 12 32 -27 }}
| 32805/32768, {{monzo| 12 32 -27 }}
| [{{val| 248 393 576 }}]
| {{mapping| 248 393 576 }}
| -0.041
| -0.041
| 0.228
| 0.228
Line 36: Line 41:
| 2.3.5.7
| 2.3.5.7
| 3136/3125, 32805/32768, 420175/419904
| 3136/3125, 32805/32768, 420175/419904
| [{{val| 248 393 576 696 }}]
| {{mapping| 248 393 576 696 }}
| +0.066
| +0.066
| 0.270
| 0.270
Line 43: Line 48:
| 2.3.5.7.11
| 2.3.5.7.11
| 441/440, 3136/3125, 8019/8000, 41503/41472
| 441/440, 3136/3125, 8019/8000, 41503/41472
| [{{val| 248 393 576 696 858 }}]
| {{mapping| 248 393 576 696 858 }}
| +0.036
| +0.036
| 0.249
| 0.249
Line 50: Line 55:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 441/440, 729/728, 847/845, 1001/1000, 3136/3125
| 441/440, 729/728, 847/845, 1001/1000, 3136/3125
| [{{val| 248 393 576 696 858 918 }}]
| {{mapping| 248 393 576 696 858 918 }}
| +0.079
| +0.079
| 0.275
| 0.275
Line 58: Line 63:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 75: Line 81:
| 498.39
| 498.39
| 4/3
| 4/3
| [[Helmholtz]]
| [[Helmholtz (temperament)|Helmholtz]]
|-
|-
| 2
| 2
| 77\248<br>(47\248)
| 77\248<br />(47\248)
| 372.58<br>(227.42)
| 372.58<br />(227.42)
| 26/21<br>(154/135)
| 26/21<br />(154/135)
| [[Essence]]
| [[Essence]]
|-
|-
Line 90: Line 96:
|-
|-
| 8
| 8
| 117\248<br>(7\248)
| 117\248<br />(7\248)
| 566.13<br>(33.87)
| 566.13<br />(33.87)
| 104/75<br>(49/48)
| 104/75<br />(49/48)
| [[Octowerck]]
| [[Octowerck]]
|-
|-
| 31
| 31
| 103\248<br>(1\248)
| 103\248<br />(1\248)
| 498.39<br>(4.84)
| 498.39<br />(4.84)
| 4/3<br>(385/384)
| 4/3<br />(385/384)
| [[Birds]]
| [[Birds]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


[[Category:Equal divisions of the octave]]
[[Category:Bischismic]]
[[Category:Bischismic]]
[[Category:Essence]]
[[Category:Essence]]
[[Category:Quartismic]]