441edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 346000418 - Original comment: ** |
m Cleanup and update |
||
(42 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
441edo is a very strong [[7-limit]] system; strong enough to qualify as a [[zeta peak edo]]. It is also very strong simply considered as a [[5-limit]] system; it is the first division past [[118edo|118]] with a lower [[5-limit]] [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]. In the 5-limit it [[tempering out|tempers out]] the [[hemithirds comma]], {{monzo| 38 -2 -15 }}, the [[ennealimma]], {{monzo| 1 -27 18 }}, whoosh, {{monzo| 37 25 -33 }}, and egads, {{monzo| -36 -52 51 }}. In the 7-limit it tempers out [[2401/2400]], [[4375/4374]], [[420175/419904]] and [[250047/250000]], so that it [[support]]s [[ennealimmal]]. In the [[11-limit]] it tempers out [[4000/3993]], and in the [[13-limit]], [[1575/1573]], [[2080/2079]] and [[4096/4095]]. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments #Ennealimmal|semiennealimmal]], the {{nowrap| 72 & 369f }} temperament, and for the 7-limit {{nowrap| 41 & 400 }} temperament. Since it tempers out 1575/1573, the nicola, it allows the [[nicolic chords]] in the [[15-odd-limit]]. | |||
441 | The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like [[205edo]] but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system. | ||
One step of 441edo is also of a size close to [[625/624]], the tunbarsma. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|441|prec=3}} | |||
441 | |||
=== Subsets and supersets === | |||
441 factors into primes as {{nowrap| 3<sup>2</sup> × 7<sup>2</sup> }}, and 441edo has subset edos {{EDOs| 3, 7, 9, 21, 49, 63 and 147 }}. | |||
[[882edo]], which doubles it, gives an alternative mapping for harmonics 11 and 17. [[1323edo]], which divides the edostep into three, is the smallest distinctly consistent edo in the 29-odd-limit and thus provides good correction for prime harmonics from 11 to 29. | |||
== Selected intervals == | |||
{| class="wikitable" | |||
|+ style="font-size; 105%;" | Selected intervals | |||
|- | |||
! Step | |||
! Eliora's naming system | |||
! Asosociated ratio | |||
|- | |||
| 0 | |||
| Prime | |||
| 1/1 | |||
|- | |||
| 8 | |||
| Syntonic comma | |||
| 81/80 | |||
|- | |||
| 9 | |||
| Pythagorean comma | |||
| 531441/524288 | |||
|- | |||
| 10 | |||
| Septimal comma | |||
| 64/63 | |||
|- | |||
| 75 | |||
| Whole tone | |||
| 9/8 | |||
|- | |||
| 85 | |||
| Septimal supermajor second | |||
| 8/7 | |||
|- | |||
| 98 | |||
| Septimal subminor third | |||
| 7/6 | |||
|- | |||
| 142 | |||
| Classical major 3rd | |||
| 5/4 | |||
|- | |||
| 150 | |||
| Pythagorean major 3rd | |||
| 81/64 | |||
|- | |||
| 258 | |||
| Perfect 5th | |||
| 3/2 | |||
|- | |||
| 356 | |||
| Harmonic 7th | |||
| 7/4 | |||
|- | |||
| 441 | |||
| Octave | |||
| 2/1 | |||
|} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| {{Monzo| 38 -2 -15 }}, {{monzo| 1 -27 18 }} | |||
| {{Mapping| 441 699 1024 }} | |||
| −0.0297 | |||
| 0.0224 | |||
| 0.82 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 4375/4374, {{monzo| 38 -2 -15 }} | |||
| {{Mapping| 441 699 1024 1238 }} | |||
| −0.0117 | |||
| 0.0367 | |||
| 1.35 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 4000/3993, 4375/4374, 131072/130977 | |||
| {{Mapping| 441 699 1024 1238 1526 }} | |||
| −0.0708 | |||
| 0.1227 | |||
| 4.51 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 1575/1573, 2080/2079, 2401/2400, 4096/4095, 4375/4374 | |||
| {{Mapping| 441 699 1024 1238 1526 1632 }} | |||
| −0.0720 | |||
| 0.1120 | |||
| 4.12 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 936/935, 1225/1224, 1575/1573, 1701/1700, 2025/2023, 4096/4095 | |||
| {{Mapping| 441 699 1024 1238 1526 1632 1803 }} | |||
| −0.1025 | |||
| 0.1278 | |||
| 4.70 | |||
|} | |||
* 441et has a lower relative error than any previous equal temperaments in the 5-limit, past [[118edo|118]] and before [[559edo|559]]. | |||
* 441et is also notable in the 7-limit, where it has a lower absolute error than any previous equal temperaments, past [[171edo|171]] and before [[612edo|612]]. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |||
| 1 | |||
| 71\441 | |||
| 193.20 | |||
| 262144/234375 | |||
| [[Lunatic]] | |||
|- | |||
| 1 | |||
| 95\441 | |||
| 258.50 | |||
| {{Monzo| -32 13 5 }} | |||
| [[Lafa]] | |||
|- | |||
| 1 | |||
| 116\441 | |||
| 315.65 | |||
| 6/5 | |||
| [[Egads]] | |||
|- | |||
| 1 | |||
| 128\441 | |||
| 348.30 | |||
| 57344/46875 | |||
| [[Subneutral]] | |||
|- | |||
| 1 | |||
| 206\441 | |||
| 560.54 | |||
| 864/625 | |||
| [[Whoosh]] | |||
|- | |||
| 1 | |||
| 208\441 | |||
| 565.99 | |||
| 104/75 | |||
| [[Alphatrillium]] | |||
|- | |||
| 7 | |||
| 191\441<br>(2\441) | |||
| 519.73<br>(5.44) | |||
| 27/20<br>(325/324) | |||
| [[Brahmagupta]] | |||
|- | |||
| 9 | |||
| 92\441<br>(6\441) | |||
| 250.34<br>(16.33) | |||
| 140/121<br>(100/99) | |||
| [[Semiennealimmal]] | |||
|- | |||
| 9 | |||
| 116\441<br>(18\441) | |||
| 315.65<br>(48.98) | |||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] / [[ennealimmia]] | |||
|- | |||
| 21 | |||
| 215\441<br>(5\441) | |||
| 585.03<br>(13.61) | |||
| 91875/65536<br>(126/125) | |||
| [[Akjayland]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | |||
Scales used in ''Etude in G Akjayland'', in order of size: | |||
* Balzano-200[9]: 77 41 41 41 77 41 41 41 41 ([[2L 7s]], generator = 200\441) | |||
* OEIS-A163205[11]: 9 12 24 4 44 12 84 28 8 156 60 (rank 10) | |||
* Lafa[14]: 34 34 27 34 34 27 34 34 27 34 34 27 34 27 – [[9L 5s]] (m-chro semiquartal) | |||
* Ennealimmal[27]: 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 (18L 9s) | |||
* Akjayland[84]: 6 5 5 5, repeated 21 times | |||
== Music == | |||
; [[Eliora]] | |||
* [https://www.youtube.com/watch?v=j3sq5jkFjUE ''Etude in G Akjayland for Piano and Tribal Pan''] (2022) | |||
; [[Gene Ward Smith]] | |||
* ''Bodacious Breed'' (archived 2010) – [http://www.archive.org/details/BodaciousBreed details] | [http://www.archive.org/download/BodaciousBreed/Genewardsmith-BodaciousBreed.mp3 play] – breed in 441edo tuning | |||
[[Category:Akjayland]] | |||
[[Category:Ennealimmal]] | |||
[[Category:Listen]] | |||
[[Category:Luna]] | |||
[[Category:Nicolic]] | |||
[[Category:Semienealimmal]] |