190edo: Difference between revisions

Update the prime error table; style; +semihemienneadecal
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(12 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 2 × 5 × 19
{{ED intro}}
| Step size = 6.31579¢
| Fifth = 111\190 (701.05¢)
| Semitones = 17:15 (107.37¢ : 94.74¢)
| Consistency = 15
}}
The '''190 equal divisions of the octave''' ('''190edo''') or '''190(-tone) equal temperament''' ('''190tet''', '''190et''') when view from a [[regular temperament]] perspective, divides the [[octave]] into 190 equal parts of about 6.32 [[cent]]s each.


== Theory ==
== Theory ==
190edo is interesting because of the utility of its approximations; it tempers out [[1029/1024]], [[4375/4374]], [[385/384]], [[441/440]], [[3025/3024]] and [[9801/9800]]. It provides the [[optimal patent val]] for both the 7- and 11-limit versions of [[unidec]], the 72 & 118 temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament [[portent]], which tempers out 385/384 and 441/440, and [[gamelan]], the rank-3 7-limit temperament which tempers out 1029/1024, as well as [[slendric]], the 2.3.7 subgroup temperament featured in the [[#Music]] section. In the 13-limit, 190et tempers out [[847/845]], [[625/624]], [[729/728]], [[1575/1573]] and [[1001/1000]], and provides the optimal patent val for the [[ekadash]] temperament and the rank-3 [[portentous]] temperament.
190edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with a flat tendency, as [[harmonic]]s 3 through 13 are all tuned flat.
 
190edo is interesting because of the utility of its approximations; it [[tempering out|tempers out]] [[1029/1024]], [[4375/4374]], [[385/384]], [[441/440]], [[3025/3024]], and [[9801/9800]]. It provides the [[optimal patent val]] for both the 7- and 11-limit versions of [[unidec]], the {{nowrap|72 & 118}} temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament [[portent]], which tempers out 385/384 and 441/440, and [[gamelan]], the rank-3 7-limit temperament which tempers out 1029/1024, as well as [[slendric]], the 2.3.7 subgroup temperament featured in the [[#Music]] section. In the 13-limit, 190et tempers out [[625/624]], [[729/728]], [[847/845]], [[1001/1000]] and [[1575/1573]], and provides the optimal patent val for the [[ekadash]] temperament and the rank-3 [[portentous]] temperament.
 
The 190g [[val]] shows us a smooth path to the even higher limits. This extension tempers out [[289/288]], [[561/560]], [[595/594]] in the 17-limit; [[343/342]], [[476/475]], [[495/494]] in the 19-limit; and [[391/390]], [[529/528]] in the 23-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|190|columns=11}}
{{Harmonics in equal|190|intervals=prime}}
 
=== Subsets and supersets ===
Since 190 factors into {{factorization|190}}, 190edo has subset edos {{EDOs| 2, 5, 10, 19, 38, and 95 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
Line 26: Line 28:
|-
|-
| 2.3
| 2.3
| {{monzo| -301 190 }}
| {{Monzo| -301 190 }}
| [{{val| 190 301 }}]
| {{Mapping| 190 301 }}
| +0.285
| +0.285
| 0.285
| 0.285
Line 34: Line 36:
| 2.3.5
| 2.3.5
| 2109375/2097152, {{monzo| -7 22 -12 }}
| 2109375/2097152, {{monzo| -7 22 -12 }}
| [{{val| 190 301 441 }}]
| {{Mapping| 190 301 441 }}
| +0.341
| +0.341
| 0.246
| 0.246
Line 41: Line 43:
| 2.3.5.7
| 2.3.5.7
| 1029/1024, 4375/4374, 235298/234375
| 1029/1024, 4375/4374, 235298/234375
| [{{val| 190 301 441 533 }}]
| {{Mapping| 190 301 441 533 }}
| +0.479
| +0.479
| 0.321
| 0.321
Line 48: Line 50:
| 2.3.5.7.11
| 2.3.5.7.11
| 385/384, 441/440, 4375/4374, 234375/234256
| 385/384, 441/440, 4375/4374, 234375/234256
| [{{val| 190 301 441 533 657 }}]
| {{Mapping| 190 301 441 533 657 }}
| +0.490
| +0.490
| 0.288
| 0.288
Line 55: Line 57:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 385/384, 441/440, 625/624, 729/728, 847/845
| 385/384, 441/440, 625/624, 729/728, 847/845
| [{{val| 190 301 441 533 657 703 }}]
| {{Mapping| 190 301 441 533 657 703 }}
| +0.432
| +0.432
| 0.293
| 0.293
| 4.63
| 4.63
|-
| 2.3.5.7.11.13.17
| 289/288, 385/384, 441/440, 561/560, 625/624, 847/845
| {{Mapping| 190 301 441 533 657 703 776 }} (190g)
| +0.507
| 0.327
| 5.18
|-
| 2.3.5.7.11.13.17.19
| 289/288, 343/342, 385/384, 441/440, 476/475, 495/494, 847/845
| {{Mapping| 190 301 441 533 657 703 776 807 }} (190g)
| +0.463
| 0.327
| 5.17
|-
| 2.3.5.7.11.13.17.19.23
| 289/288, 343/342, 385/384, 391/390, 441/440, 476/475, 495/494, 529/528
| {{Mapping| 190 301 441 533 657 703 776 807 859 }} (190g)
| +0.486
| 0.315
| 4.98
|}
|}
* 190et (190g val) has a lower relative error in the 23-limit than any previous equal temperaments, being the first to beat [[94edo|94]]. However, [[193edo|193]], only slightly larger, beats it.
* It is also prominent in the 13- and 19-limit, with lower absolute errors than any previous equal temperaments. It beats [[183edo|183]] in either subgroup and is bettered by [[198edo|198]] in the 13-limit, and by 193 in the 19-limit.


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per Octave
|-
! Generator<br>(Reduced)
! Periods<br>per 8ve
! Cents<br>(Reduced)
! Generator*
! Associated<br>Ratio
! Cents*
! Temperaments
! Associated<br>ratio*
! Temperament
|-
|-
| 1
| 1
Line 80: Line 106:
| 271.58
| 271.58
| 75/64
| 75/64
| [[Orson]] / [[sabric]]
| [[Sabric]]
|-
|-
| 1
| 1
Line 128: Line 154:
| 498.95<br>(18.95)
| 498.95<br>(18.95)
| 4/3<br>(81/80)
| 4/3<br>(81/80)
| [[Pental]]
| [[Quintile]]
|-
|-
| 10
| 10
Line 140: Line 166:
| 498.95<br>(18.95)
| 498.95<br>(18.95)
| 4/3<br>(81/80)
| 4/3<br>(81/80)
| [[Decal]]
| [[Decile]]
|-
|-
| 19
| 19
Line 160: Line 186:
| [[Semihemienneadecal]]
| [[Semihemienneadecal]]
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Scales ==
== Scales ==
Line 168: Line 195:


== Music ==
== Music ==
* [http://micro.soonlabel.com/tuning-survey/daily20111026-the-11th-slendric-fanfare.mp3 The 11th Slendric Fanfare]
; [[Chris Vaisvil]]
* [http://micro.soonlabel.com/tuning-survey/daily20111026-16-slendric-virgins.mp3 16 Slendric Virgins] by [[Chris Vaisvil]]
* [http://micro.soonlabel.com/tuning-survey/daily20111026-the-11th-slendric-fanfare.mp3 ''The 11th Slendric Fanfare'']
* [http://micro.soonlabel.com/tuning-survey/daily20111026-16-slendric-virgins.mp3 ''16 Slendric Virgins'']


[[Category:190edo| ]] <!-- main article -->
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Unidec]]
[[Category:Ekadash]]
[[Category:Ekadash]]
[[Category:Gamelan]]
[[Category:Gamelismic]]
[[Category:Listen]]
[[Category:Portent]]
[[Category:Portent]]
[[Category:Portentous]]
[[Category:Portentous]]
[[Category:Unidec]]