Parapyth: Difference between revisions
m De-bold pepperoni cuz this is not redirect target thereof. A double line should be enough for splitting the two diagrams. Misc. cleanup |
ArrowHead294 (talk | contribs) mNo edit summary Tag: Reverted |
||
Line 52: | Line 52: | ||
[[87edo]] is special for being the smallest "strict parapyth edo" (tempers out 352/351 and 364/363 and maps all of 121/120, 144/143, and 169/168 positively, meeting [[Margo Schulter]]'s criterion for "middle parapyth in the strict sense"). The following are strict parapyth edos below 311 that are not contorted in the 13-limit: {{Optimal ET sequence| 87, 104, 121, 128, 133, 145, 150, 167, 184, 191, 196, ''208'', 213, 230, 232, 237, 254, 259, 271, 278, 283, 295 }}. (Note: 208edo is contorted in 2.3.7.11.13 subgroup but not in the full 13-limit.) | [[87edo]] is special for being the smallest "strict parapyth edo" (tempers out 352/351 and 364/363 and maps all of 121/120, 144/143, and 169/168 positively, meeting [[Margo Schulter]]'s criterion for "middle parapyth in the strict sense"). The following are strict parapyth edos below 311 that are not contorted in the 13-limit: {{Optimal ET sequence| 87, 104, 121, 128, 133, 145, 150, 167, 184, 191, 196, ''208'', 213, 230, 232, 237, 254, 259, 271, 278, 283, 295 }}. (Note: 208edo is contorted in 2.3.7.11.13 subgroup but not in the full 13-limit.) | ||
If we instead mean "parapyth" to refer to [[etypyth]] | If we instead mean "parapyth" to refer to [[etypyth]]—its most elegant extension to the no-5's 17-limit (so we ignore [[100/99|S10]] and [[121/120|S11]])—then the minimal strict etypyth (a.k.a. [[etypyth|17-limit parapyth]]) is [[46edo]], although this requires accepting its [[21/17]] as standing in for ~[[16/13]] and ~[[26/21]], corresponding roughly to (the [[octave complement]] of) [[acoustic phi]] so that stacking this interval gives a ~17:21:26:32 chord. The benefit of taking this no-5's interpretation is you do not deal with any conceptual issues arising from an out-of-tune [[15/13]] in 46edo, but you could deal with this alternately by interpreting simply only in the [[13-odd-limit]] adding odds 17, 21 and 23, which highlights that a benefit of 46edo is a fairly accurate [[23/16]] in the usual parapyth mapping of a tritone (C–F♯), tempering out {{nowrap|([[23/16]])/[[729/512|(9/8)<sup>3</sup>]] {{=}} [[736/729]]}}. Alternatively, if you want a more accurate [[9/7]], [[7/6]], [[13/11]], [[104edo]] is an excellent etypyth tuning. 104edo is a dual-5 system that supports both the [[sensamagic]] (104) and [[pele]] (104c) mappings of 5, so that the combined [[25/16]] is very accurate (tempered together with the 81/52 (C–vG♯), distinguished from [[11/7]] (C–A♭) and [[14/9]] (C–^G) simultaneously). Pele may be preferable as a default due to it observing [[100/99|S10]] and [[121/120|S11]]. Sensamagic has the capacity to observe them too, but in the specific case of 104edo it tempers out S10. | ||
== External links == | == External links == |