User:AthiTrydhen/15-limit tonality diamond: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Praimhin
**Imported revision 588772130 - Original comment: **
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Inaccessible}}Todo: Incorporate Hendrix diamond ideas
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Praimhin|Praimhin]] and made on <tt>2016-08-04 01:23:52 UTC</tt>.<br>
: The original revision id was <tt>588772130</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The **15-limit tonality diamond** has the following notes:


|| 1/1 || 9/8 || 5/4 || 11/8 || 3/2 || 13/8 || 7/4 || 15/8 ||
The '''15-limit tonality diamond''' has the following notes:
|| 16/9 || 1/1 || 10/9 || 11/9 || 4/3 || 13/9 || 14/9 || 5/3 ||
 
|| 8/5 || 9/5 || 1/1 || 11/10 || 6/5 || 13/10 || 7/5 || 3/2 ||
{| class="wikitable"
|| 16/11 || 18/11 || 20/11 || 1/1 || 12/11 || 13/11 || 14/11 || 15/11 ||
|-
|| 4/3 || 3/2 || 5/3 || 11/6 || 1/1 || 13/12 || 7/6 || 5/4 ||
| | 1/1
|| 16/13 || 18/13 || 20/13 || 22/13 || 24/13 || 1/1 || 14/13 || 15/13 ||
| | 9/8
|| 8/7 || 9/7 || 10/7 || 11/7 || 12/7 || 13/7 || 1/1 || 15/14 ||
| | 5/4
|| 16/15 || 6/5 || 4/3 || 22/15 || 8/5 || 26/15 || 28/15 || 1/1 ||
| | 11/8
==Symmetry group==  
| | 3/2
| | 13/8
| | 7/4
| | 15/8
|-
| | 16/9
| | 1/1
| | 10/9
| | 11/9
| | 4/3
| | 13/9
| | 14/9
| | 5/3
|-
| | 8/5
| | 9/5
| | 1/1
| | 11/10
| | 6/5
| | 13/10
| | 7/5
| | 3/2
|-
| | 16/11
| | 18/11
| | 20/11
| | 1/1
| | 12/11
| | 13/11
| | 14/11
| | 15/11
|-
| | 4/3
| | 3/2
| | 5/3
| | 11/6
| | 1/1
| | 13/12
| | 7/6
| | 5/4
|-
| | 16/13
| | 18/13
| | 20/13
| | 22/13
| | 24/13
| | 1/1
| | 14/13
| | 15/13
|-
| | 8/7
| | 9/7
| | 10/7
| | 11/7
| | 12/7
| | 13/7
| | 1/1
| | 15/14
|-
| | 16/15
| | 6/5
| | 4/3
| | 22/15
| | 8/5
| | 26/15
| | 28/15
| | 1/1
|}
 
==Symmetry group==


The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:
* Transformation //R//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9
* Transformation //S//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8
* Transformation //S'//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8
* Transformation //T//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13
These generators have the relations //R//² = //S//² = //T//² = //S//'² = I, (//SS//')³ = I, //RS// = //SR//, //RS//' = //S//'//R//, and //T// commutes with the three other generators. Thus the symmetry group is isomorphic to //S//₃ × //C//₂².


===Orbits and Invariant Subsets===
<ul><li>Transformation ''R'': 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9</li><li>Transformation ''S'': 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8</li><li>Transformation ''S''': 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8</li><li>Transformation ''T'': 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13</li></ul>
The [[Hendrix diamond]] is invariant under action by //R,// //S//' and //T//, and the images of the action of //S// and //S//² on the Hendrix diamond are the [[11-Hendrix diamond]] and [[13-Hendrix diamond]] respectively.


Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.</pre></div>
These generators have the relations ''R''² = ''S''² = ''T''² = ''S'''² = I, (''SS''')³ = I, ''RS'' = ''SR'', ''RS''' = ''S'''''R'', and ''T'' commutes with the three other generators. Thus the symmetry group is isomorphic to ''S''₃ × ''C''₂².
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;15-limit tonality diamond&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;15-limit tonality diamond&lt;/strong&gt; has the following notes:&lt;br /&gt;
&lt;br /&gt;


===Orbits and Invariant Subsets===
The [[Hendrix_diamond|Hendrix diamond]] is invariant under action by ''R,'' ''S''' and ''T'', and the images of the action of ''S'' and ''S''² on the Hendrix diamond are the [[11-Hendrix_diamond|11-Hendrix diamond]] and [[13-Hendrix_diamond|13-Hendrix diamond]] respectively.


&lt;table class="wiki_table"&gt;
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.
    &lt;tr&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Symmetry group"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Symmetry group&lt;/h2&gt;
[[Category:15-odd-limit]]
&lt;br /&gt;
[[Category:Diamond]]
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;Transformation &lt;em&gt;R&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 5:3, 14:9, 11:9, 13:9&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;S&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 11:8, 7:4, 13:8&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;S'&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 7:4, 13:8, 11:8&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;T&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 8:5, 8:7, 16:11, 16:13&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
These generators have the relations &lt;em&gt;R&lt;/em&gt;² = &lt;em&gt;S&lt;/em&gt;² = &lt;em&gt;T&lt;/em&gt;² = &lt;em&gt;S&lt;/em&gt;'² = I, (&lt;em&gt;SS&lt;/em&gt;')³ = I, &lt;em&gt;RS&lt;/em&gt; = &lt;em&gt;SR&lt;/em&gt;, &lt;em&gt;RS&lt;/em&gt;' = &lt;em&gt;S&lt;/em&gt;'&lt;em&gt;R&lt;/em&gt;, and &lt;em&gt;T&lt;/em&gt; commutes with the three other generators. Thus the symmetry group is isomorphic to &lt;em&gt;S&lt;/em&gt;₃ × &lt;em&gt;C&lt;/em&gt;₂².&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Symmetry group-Orbits and Invariant Subsets"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orbits and Invariant Subsets&lt;/h3&gt;
The &lt;a class="wiki_link" href="/Hendrix%20diamond"&gt;Hendrix diamond&lt;/a&gt; is invariant under action by &lt;em&gt;R,&lt;/em&gt; &lt;em&gt;S&lt;/em&gt;' and &lt;em&gt;T&lt;/em&gt;, and the images of the action of &lt;em&gt;S&lt;/em&gt; and &lt;em&gt;S&lt;/em&gt;² on the Hendrix diamond are the &lt;a class="wiki_link" href="/11-Hendrix%20diamond"&gt;11-Hendrix diamond&lt;/a&gt; and &lt;a class="wiki_link" href="/13-Hendrix%20diamond"&gt;13-Hendrix diamond&lt;/a&gt; respectively.&lt;br /&gt;
&lt;br /&gt;
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 05:49, 14 December 2024

This page or section may be difficult to understand to those unfamiliar with the mathematical concepts involved. A more accessible version will be worked on; in the meantime, feel free to ask questions in the Xenharmonic Alliance Discord server or Facebook group.

Todo: Incorporate Hendrix diamond ideas

The 15-limit tonality diamond has the following notes:

1/1 9/8 5/4 11/8 3/2 13/8 7/4 15/8
16/9 1/1 10/9 11/9 4/3 13/9 14/9 5/3
8/5 9/5 1/1 11/10 6/5 13/10 7/5 3/2
16/11 18/11 20/11 1/1 12/11 13/11 14/11 15/11
4/3 3/2 5/3 11/6 1/1 13/12 7/6 5/4
16/13 18/13 20/13 22/13 24/13 1/1 14/13 15/13
8/7 9/7 10/7 11/7 12/7 13/7 1/1 15/14
16/15 6/5 4/3 22/15 8/5 26/15 28/15 1/1

Symmetry group

The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:

  • Transformation R: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 5:3, 14:9, 11:9, 13:9
  • Transformation S: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 11:8, 7:4, 13:8
  • Transformation S': 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 7:4, 13:8, 11:8
  • Transformation T: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 8:5, 8:7, 16:11, 16:13

These generators have the relations R² = S² = T² = S² = I, (SS)³ = I, RS = SR, RS = SR, and T commutes with the three other generators. Thus the symmetry group is isomorphic to S₃ × C₂².

Orbits and Invariant Subsets

The Hendrix diamond is invariant under action by R, S' and T, and the images of the action of S and S² on the Hendrix diamond are the 11-Hendrix diamond and 13-Hendrix diamond respectively.

Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.