Equave limit: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Contribution (talk | contribs)
No edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Purpose==
The '''equave limit'''{{idiosyncratic}} generalizes the concept of [[odd limit]], extending for any [[equave]] what the odd-limit represents specifically for the equave 2/1.
The '''equave limit''' generalizes the concept of [[odd limit]], extending for any [[equave]] what the odd-limit represents specifically for the equave 2/1.


==Definition==
== Definition ==
The '''q-equave-n-limit''' is defined as the set of all positive rationals <big><big><math>\displaystyle
The '''''q''-equave-''n''-limit''' is defined as the set of all positive rationals <math>\displaystyle
{q^z}\frac{u}{v}
{q^z}\cdot\frac{u}{v}
</math></big></big>, where:
</math>, where:
* <math>q∈Q+</math>​ (i.e., <math>q</math> is a positive rational number), called the '''equave''',
* <math>q \in \mathbb{Q}^{+}</math>​ (i.e., <math>q</math> is a positive rational number), called the '''equave''',
* <math>z∈Z</math>​ (i.e., <math>z</math> is an integer, positive or negative),
* <math>z \in \mathbb{Z}</math>​ (i.e., <math>z</math> is an integer, positive or negative),
* <math>u,v∈Z+</math>​​ (i.e., <math>u</math> and <math>v</math> are positive integers) such that <math>u≤n</math> and <math>v≤n</math>,
* <math>u,v \in \mathbb{Z}^{+}</math>​​ (i.e., <math>u</math> and <math>v</math> are positive integers) such that <math>u \leqslant n</math> and <math>v \leqslant n</math>,
* <math>n∈Z+</math>​​ (i.e., <math>n</math> is a positive integer), called the '''limit'''.
* <math>n \in \mathbb{Z}^{+}</math>​​ (i.e., <math>n</math> is a positive integer), called the '''limit'''.


The parameter <math>n</math> places an upper bound on the values of the integers <math>u</math> and <math>v</math>, meaning that both <math>u</math> and <math>v</math> are less than or equal to <math>n</math>. Thus, the '''q-equave-n-limit''' consists of ratios generated by multiplying a power of <math>q</math> by ratios <math>\displaystyle
The parameter <math>n</math> places an upper bound on the values of the integers <math>u</math> and <math>v</math>, meaning that both <math>u</math> and <math>v</math> are less than or equal to <math>n</math>. Thus, the ''q''-equave-''n''-limit consists of ratios generated by multiplying a power of <math>q</math> by ratios <math>\displaystyle
\frac{u}{v}
\frac{u}{v}
</math>​, where the numerator and denominator are constrained by the limit <math>n</math>.
</math>​, where the numerator and denominator are constrained by the limit <math>n</math>.
Line 18: Line 17:
\frac{u}{v}
\frac{u}{v}
</math>​​ by restricting them to a specific [[just intonation subgroup]].
</math>​​ by restricting them to a specific [[just intonation subgroup]].
[[Category:Limit]]

Latest revision as of 15:39, 9 September 2024

The equave limit[idiosyncratic term] generalizes the concept of odd limit, extending for any equave what the odd-limit represents specifically for the equave 2/1.

Definition

The q-equave-n-limit is defined as the set of all positive rationals [math]\displaystyle{ \displaystyle {q^z}\cdot\frac{u}{v} }[/math], where:

  • [math]\displaystyle{ q \in \mathbb{Q}^{+} }[/math]​ (i.e., [math]\displaystyle{ q }[/math] is a positive rational number), called the equave,
  • [math]\displaystyle{ z \in \mathbb{Z} }[/math]​ (i.e., [math]\displaystyle{ z }[/math] is an integer, positive or negative),
  • [math]\displaystyle{ u,v \in \mathbb{Z}^{+} }[/math]​​ (i.e., [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math] are positive integers) such that [math]\displaystyle{ u \leqslant n }[/math] and [math]\displaystyle{ v \leqslant n }[/math],
  • [math]\displaystyle{ n \in \mathbb{Z}^{+} }[/math]​​ (i.e., [math]\displaystyle{ n }[/math] is a positive integer), called the limit.

The parameter [math]\displaystyle{ n }[/math] places an upper bound on the values of the integers [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math], meaning that both [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math] are less than or equal to [math]\displaystyle{ n }[/math]. Thus, the q-equave-n-limit consists of ratios generated by multiplying a power of [math]\displaystyle{ q }[/math] by ratios [math]\displaystyle{ \displaystyle \frac{u}{v} }[/math]​, where the numerator and denominator are constrained by the limit [math]\displaystyle{ n }[/math].

Additional constraints can be applied to the ratios [math]\displaystyle{ \displaystyle \frac{u}{v} }[/math]​​ by restricting them to a specific just intonation subgroup.