Unidec/Chords: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 288514080 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 288514142 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-26 15:47:37 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-26 15:48:20 UTC</tt>.<br>
: The original revision id was <tt>288514080</tt>.<br>
: The original revision id was <tt>288514142</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Gamelismic clan#Unidec|unidec temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 werckismicmic, and by 385/384 keenanismic.  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Gamelismic clan#Unidec|unidec temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 are labeled werckismic, and by 385/384 keenanismic.  


The normal mapping for unidec is uni = [&lt;2 5 8 5 6|, &lt;0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = &lt;2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under "Chord" is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.
The normal mapping for unidec is uni = [&lt;2 5 8 5 6|, &lt;0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = &lt;2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under "Chord" is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.
Line 166: Line 166:
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chords of unidec&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Below are listed the &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic chords&lt;/a&gt; of 11-limit &lt;a class="wiki_link" href="/Gamelismic%20clan#Unidec"&gt;unidec temperament&lt;/a&gt;. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 werckismicmic, and by 385/384 keenanismic. &lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chords of unidec&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Below are listed the &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic chords&lt;/a&gt; of 11-limit &lt;a class="wiki_link" href="/Gamelismic%20clan#Unidec"&gt;unidec temperament&lt;/a&gt;. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 are labeled werckismic, and by 385/384 keenanismic. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The normal mapping for unidec is uni = [&amp;lt;2 5 8 5 6|, &amp;lt;0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = &amp;lt;2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under &amp;quot;Chord&amp;quot; is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.&lt;br /&gt;
The normal mapping for unidec is uni = [&amp;lt;2 5 8 5 6|, &amp;lt;0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = &amp;lt;2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under &amp;quot;Chord&amp;quot; is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.&lt;br /&gt;

Revision as of 15:48, 26 December 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-26 15:48:20 UTC.
The original revision id was 288514142.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Gamelismic clan#Unidec|unidec temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 are labeled werckismic, and by 385/384 keenanismic. 

The normal mapping for unidec is uni = [<2 5 8 5 6|, <0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = <2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under "Chord" is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.

Unidec has MOS of size 6, 20, 26, 46, and 72. Even the six-note MOS has some werckismic triads, and there are many more in the twenty note MOS, including many of the werckismic tetrad of complexity six and the keenanismic tetrad of complexity ten, which are likely to figure large in any composition in unidec. The essentially tempered chords of unidec either temper out 441/440 or 385/384; putting these together produces portent temperament, but there are no essentially portent chords. Adding the small ragisma, 4375/4374, to the commas of portent gives unidec, with very little additional tuning damage. Unidec is, in fact, quite an accurate temperament even compared to such things as miracle, but still has enough give in it to allow for some interesting essential tempering.


=Triads=
|| Number || Chord || Transversal || Type || Complexity ||
|| 1 || 0-100-201 || 1-10/9-7/4 || werckismic || 4 ||
|| 2 || 0-101-201 || 1-11/7-7/4 || werckismic || 4 ||
|| 3 || 0-101-300 || 1-11/7-11/8 || utonal || 6 ||
|| 4 || 0-201-300 || 1-7/4-11/8 || otonal || 6 ||
|| 5 || 0-201-499 || 1-7/4-6/5 || keenanismic || 10 ||
|| 6 || 0-300-499 || 1-11/8-6/5 || keenanismic || 10 ||
|| 7 || 0-100-599 || 1-10/9-4/3 || otonal || 12 ||
|| 8 || 0-499-599 || 1-6/5-4/3 || utonal || 12 ||
|| 9 || 0-201-798 || 1-7/4-7/6 || utonal || 16 ||
|| 10 || 0-599-798 || 1-4/3-7/6 || otonal || 16 ||
|| 11 || 0-101-899 || 1-11/7-11/6 || utonal || 18 ||
|| 12 || 0-300-899 || 1-11/8-11/6 || utonal || 18 ||
|| 13 || 0-599-899 || 1-4/3-11/6 || otonal || 18 ||
|| 14 || 0-798-899 || 1-7/6-11/6 || otonal || 18 ||
|| 15 || 0-201-1098 || 1-7/4-8/5 || keenanismic || 22 ||
|| 16 || 0-300-1098 || 1-11/8-8/5 || keenanismic || 22 ||
|| 17 || 0-499-1098 || 1-6/5-8/5 || otonal || 22 ||
|| 18 || 0-599-1098 || 1-4/3-8/5 || utonal || 22 ||
|| 19 || 0-798-1098 || 1-7/6-8/5 || keenanismic || 22 ||
|| 20 || 0-899-1098 || 1-11/6-8/5 || keenanismic || 22 ||
|| 21 || 0-100-1198 || 1-10/9-16/9 || otonal || 24 ||
|| 22 || 0-599-1198 || 1-4/3-16/9 || ambitonal || 24 ||
|| 23 || 0-1098-1198 || 1-8/5-16/9 || utonal || 24 ||
|| 24 || 0-101-1297 || 1-11/7-7/5 || werckismic || 26 ||
|| 25 || 0-201-1297 || 1-7/4-7/5 || utonal || 26 ||
|| 26 || 0-499-1297 || 1-6/5-7/5 || otonal || 26 ||
|| 27 || 0-798-1297 || 1-7/6-7/5 || utonal || 26 ||
|| 28 || 0-1098-1297 || 1-8/5-7/5 || otonal || 26 ||
|| 29 || 0-1198-1297 || 1-16/9-7/5 || werckismic || 26 ||
|| 30 || 0-101-1396 || 1-11/7-11/10 || utonal || 28 ||
|| 31 || 0-300-1396 || 1-11/8-11/10 || utonal || 28 ||
|| 32 || 0-499-1396 || 1-6/5-11/10 || otonal || 28 ||
|| 33 || 0-899-1396 || 1-11/6-11/10 || utonal || 28 ||
|| 34 || 0-1098-1396 || 1-8/5-11/10 || otonal || 28 ||
|| 35 || 0-1297-1396 || 1-7/5-11/10 || otonal || 28 ||
|| 36 || 0-100-1397 || 1-10/9-14/9 || otonal || 28 ||
|| 37 || 0-201-1397 || 1-7/4-14/9 || utonal || 28 ||
|| 38 || 0-599-1397 || 1-4/3-14/9 || otonal || 28 ||
|| 39 || 0-798-1397 || 1-7/6-14/9 || utonal || 28 ||
|| 40 || 0-1198-1397 || 1-16/9-14/9 || otonal || 28 ||
|| 41 || 0-1297-1397 || 1-7/5-14/9 || utonal || 28 ||
|| 42 || 0-100-1496 || 1-10/9-11/9 || otonal || 30 ||
|| 43 || 0-101-1496 || 1-11/7-11/9 || utonal || 30 ||
|| 44 || 0-201-1496 || 1-7/4-11/9 || werckismic || 30 ||
|| 45 || 0-300-1496 || 1-11/8-11/9 || utonal || 30 ||
|| 46 || 0-599-1496 || 1-4/3-11/9 || otonal || 30 ||
|| 47 || 0-899-1496 || 1-11/6-11/9 || utonal || 30 ||
|| 48 || 0-1198-1496 || 1-16/9-11/9 || otonal || 30 ||
|| 49 || 0-1297-1496 || 1-7/5-11/9 || werckismic || 30 ||
|| 50 || 0-1396-1496 || 1-11/10-11/9 || utonal || 30 ||
|| 51 || 0-1397-1496 || 1-14/9-11/9 || otonal || 30 ||

=Tetrads=
|| Number || Chord || Transversal || Type || Complexity ||
|| 1 || 0-101-201-300 || 1-11/7-7/4-11/8 || werckismic || 6 ||
|| 2 || 0-201-300-499 || 1-7/4-11/8-6/5 || keenanismic || 10 ||
|| 3 || 0-101-300-899 || 1-11/7-11/8-11/6 || utonal || 18 ||
|| 4 || 0-599-798-899 || 1-4/3-7/6-11/6 || otonal || 18 ||
|| 5 || 0-201-300-1098 || 1-7/4-11/8-8/5 || keenanismic || 22 ||
|| 6 || 0-201-499-1098 || 1-7/4-6/5-8/5 || keenanismic || 22 ||
|| 7 || 0-300-499-1098 || 1-11/8-6/5-8/5 || keenanismic || 22 ||
|| 8 || 0-499-599-1098 || 1-6/5-4/3-8/5 || ambitonal || 22 ||
|| 9 || 0-201-798-1098 || 1-7/4-7/6-8/5 || keenanismic || 22 ||
|| 10 || 0-599-798-1098 || 1-4/3-7/6-8/5 || keenanismic || 22 ||
|| 11 || 0-300-899-1098 || 1-11/8-11/6-8/5 || keenanismic || 22 ||
|| 12 || 0-599-899-1098 || 1-4/3-11/6-8/5 || keenanismic || 22 ||
|| 13 || 0-798-899-1098 || 1-7/6-11/6-8/5 || keenanismic || 22 ||
|| 14 || 0-100-599-1198 || 1-10/9-4/3-16/9 || otonal || 24 ||
|| 15 || 0-599-1098-1198 || 1-4/3-8/5-16/9 || utonal || 24 ||
|| 16 || 0-101-201-1297 || 1-11/7-7/4-7/5 || werckismic || 26 ||
|| 17 || 0-201-499-1297 || 1-7/4-6/5-7/5 || keenanismic || 26 ||
|| 18 || 0-201-798-1297 || 1-7/4-7/6-7/5 || utonal || 26 ||
|| 19 || 0-201-1098-1297 || 1-7/4-8/5-7/5 || keenanismic || 26 ||
|| 20 || 0-499-1098-1297 || 1-6/5-8/5-7/5 || otonal || 26 ||
|| 21 || 0-798-1098-1297 || 1-7/6-8/5-7/5 || keenanismic || 26 ||
|| 22 || 0-1098-1198-1297 || 1-8/5-16/9-7/5 || werckismic || 26 ||
|| 23 || 0-101-300-1396 || 1-11/7-11/8-11/10 || utonal || 28 ||
|| 24 || 0-300-499-1396 || 1-11/8-6/5-11/10 || keenanismic || 28 ||
|| 25 || 0-101-899-1396 || 1-11/7-11/6-11/10 || utonal || 28 ||
|| 26 || 0-300-899-1396 || 1-11/8-11/6-11/10 || utonal || 28 ||
|| 27 || 0-300-1098-1396 || 1-11/8-8/5-11/10 || keenanismic || 28 ||
|| 28 || 0-499-1098-1396 || 1-6/5-8/5-11/10 || otonal || 28 ||
|| 29 || 0-899-1098-1396 || 1-11/6-8/5-11/10 || keenanismic || 28 ||
|| 30 || 0-101-1297-1396 || 1-11/7-7/5-11/10 || werckismic || 28 ||
|| 31 || 0-499-1297-1396 || 1-6/5-7/5-11/10 || otonal || 28 ||
|| 32 || 0-1098-1297-1396 || 1-8/5-7/5-11/10 || otonal || 28 ||
|| 33 || 0-100-201-1397 || 1-10/9-7/4-14/9 || werckismic || 28 ||
|| 34 || 0-100-599-1397 || 1-10/9-4/3-14/9 || otonal || 28 ||
|| 35 || 0-201-798-1397 || 1-7/4-7/6-14/9 || utonal || 28 ||
|| 36 || 0-599-798-1397 || 1-4/3-7/6-14/9 || ambitonal || 28 ||
|| 37 || 0-100-1198-1397 || 1-10/9-16/9-14/9 || otonal || 28 ||
|| 38 || 0-599-1198-1397 || 1-4/3-16/9-14/9 || otonal || 28 ||
|| 39 || 0-201-1297-1397 || 1-7/4-7/5-14/9 || utonal || 28 ||
|| 40 || 0-798-1297-1397 || 1-7/6-7/5-14/9 || utonal || 28 ||
|| 41 || 0-1198-1297-1397 || 1-16/9-7/5-14/9 || werckismic || 28 ||
|| 42 || 0-100-201-1496 || 1-10/9-7/4-11/9 || werckismic || 30 ||
|| 43 || 0-101-201-1496 || 1-11/7-7/4-11/9 || werckismic || 30 ||
|| 44 || 0-101-300-1496 || 1-11/7-11/8-11/9 || utonal || 30 ||
|| 45 || 0-201-300-1496 || 1-7/4-11/8-11/9 || werckismic || 30 ||
|| 46 || 0-100-599-1496 || 1-10/9-4/3-11/9 || otonal || 30 ||
|| 47 || 0-101-899-1496 || 1-11/7-11/6-11/9 || utonal || 30 ||
|| 48 || 0-300-899-1496 || 1-11/8-11/6-11/9 || utonal || 30 ||
|| 49 || 0-599-899-1496 || 1-4/3-11/6-11/9 || ambitonal || 30 ||
|| 50 || 0-100-1198-1496 || 1-10/9-16/9-11/9 || otonal || 30 ||
|| 51 || 0-599-1198-1496 || 1-4/3-16/9-11/9 || otonal || 30 ||
|| 52 || 0-101-1297-1496 || 1-11/7-7/5-11/9 || werckismic || 30 ||
|| 53 || 0-201-1297-1496 || 1-7/4-7/5-11/9 || werckismic || 30 ||
|| 54 || 0-1198-1297-1496 || 1-16/9-7/5-11/9 || werckismic || 30 ||
|| 55 || 0-101-1396-1496 || 1-11/7-11/10-11/9 || utonal || 30 ||
|| 56 || 0-300-1396-1496 || 1-11/8-11/10-11/9 || utonal || 30 ||
|| 57 || 0-899-1396-1496 || 1-11/6-11/10-11/9 || utonal || 30 ||
|| 58 || 0-1297-1396-1496 || 1-7/5-11/10-11/9 || werckismic || 30 ||
|| 59 || 0-100-1397-1496 || 1-10/9-14/9-11/9 || otonal || 30 ||
|| 60 || 0-201-1397-1496 || 1-7/4-14/9-11/9 || werckismic || 30 ||
|| 61 || 0-599-1397-1496 || 1-4/3-14/9-11/9 || otonal || 30 ||
|| 62 || 0-1198-1397-1496 || 1-16/9-14/9-11/9 || otonal || 30 ||
|| 63 || 0-1297-1397-1496 || 1-7/5-14/9-11/9 || werckismic || 30 ||

=Pentads=
|| Number || Chord || Transversal || Type || Complexity ||
|| 1 || 0-201-300-499-1098 || 1-7/4-11/8-6/5-8/5 || keenanismic || 22 ||
|| 2 || 0-599-798-899-1098 || 1-4/3-7/6-11/6-8/5 || keenanismic || 22 ||
|| 3 || 0-201-499-1098-1297 || 1-7/4-6/5-8/5-7/5 || keenanismic || 26 ||
|| 4 || 0-201-798-1098-1297 || 1-7/4-7/6-8/5-7/5 || keenanismic || 26 ||
|| 5 || 0-101-300-899-1396 || 1-11/7-11/8-11/6-11/10 || utonal || 28 ||
|| 6 || 0-300-499-1098-1396 || 1-11/8-6/5-8/5-11/10 || keenanismic || 28 ||
|| 7 || 0-300-899-1098-1396 || 1-11/8-11/6-8/5-11/10 || keenanismic || 28 ||
|| 8 || 0-499-1098-1297-1396 || 1-6/5-8/5-7/5-11/10 || otonal || 28 ||
|| 9 || 0-100-599-1198-1397 || 1-10/9-4/3-16/9-14/9 || otonal || 28 ||
|| 10 || 0-201-798-1297-1397 || 1-7/4-7/6-7/5-14/9 || utonal || 28 ||
|| 11 || 0-101-201-300-1496 || 1-11/7-7/4-11/8-11/9 || werckismic || 30 ||
|| 12 || 0-101-300-899-1496 || 1-11/7-11/8-11/6-11/9 || utonal || 30 ||
|| 13 || 0-100-599-1198-1496 || 1-10/9-4/3-16/9-11/9 || otonal || 30 ||
|| 14 || 0-101-201-1297-1496 || 1-11/7-7/4-7/5-11/9 || werckismic || 30 ||
|| 15 || 0-101-300-1396-1496 || 1-11/7-11/8-11/10-11/9 || utonal || 30 ||
|| 16 || 0-101-899-1396-1496 || 1-11/7-11/6-11/10-11/9 || utonal || 30 ||
|| 17 || 0-300-899-1396-1496 || 1-11/8-11/6-11/10-11/9 || utonal || 30 ||
|| 18 || 0-101-1297-1396-1496 || 1-11/7-7/5-11/10-11/9 || werckismic || 30 ||
|| 19 || 0-100-201-1397-1496 || 1-10/9-7/4-14/9-11/9 || werckismic || 30 ||
|| 20 || 0-100-599-1397-1496 || 1-10/9-4/3-14/9-11/9 || otonal || 30 ||
|| 21 || 0-100-1198-1397-1496 || 1-10/9-16/9-14/9-11/9 || otonal || 30 ||
|| 22 || 0-599-1198-1397-1496 || 1-4/3-16/9-14/9-11/9 || otonal || 30 ||
|| 23 || 0-201-1297-1397-1496 || 1-7/4-7/5-14/9-11/9 || werckismic || 30 ||
|| 24 || 0-1198-1297-1397-1496 || 1-16/9-7/5-14/9-11/9 || werckismic || 30 ||

=Hexads=
|| Number || Chord || Transversal || Type || Complexity ||
|| 1 || 0-101-300-899-1396-1496 || 1-11/7-11/8-11/6-11/10-11/9 || utonal || 30 ||
|| 2 || 0-100-599-1198-1397-1496 || 1-10/9-4/3-16/9-14/9-11/9 || otonal || 30 ||

Original HTML content:

<html><head><title>Chords of unidec</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Gamelismic%20clan#Unidec">unidec temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 are labeled werckismic, and by 385/384 keenanismic. <br />
<br />
The normal mapping for unidec is uni = [&lt;2 5 8 5 6|, &lt;0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = &lt;2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under &quot;Chord&quot; is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.<br />
<br />
Unidec has MOS of size 6, 20, 26, 46, and 72. Even the six-note MOS has some werckismic triads, and there are many more in the twenty note MOS, including many of the werckismic tetrad of complexity six and the keenanismic tetrad of complexity ten, which are likely to figure large in any composition in unidec. The essentially tempered chords of unidec either temper out 441/440 or 385/384; putting these together produces portent temperament, but there are no essentially portent chords. Adding the small ragisma, 4375/4374, to the commas of portent gives unidec, with very little additional tuning damage. Unidec is, in fact, quite an accurate temperament even compared to such things as miracle, but still has enough give in it to allow for some interesting essential tempering.<br />
<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
        <td>Complexity<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-100-201<br />
</td>
        <td>1-10/9-7/4<br />
</td>
        <td>werckismic<br />
</td>
        <td>4<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-101-201<br />
</td>
        <td>1-11/7-7/4<br />
</td>
        <td>werckismic<br />
</td>
        <td>4<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-101-300<br />
</td>
        <td>1-11/7-11/8<br />
</td>
        <td>utonal<br />
</td>
        <td>6<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-201-300<br />
</td>
        <td>1-7/4-11/8<br />
</td>
        <td>otonal<br />
</td>
        <td>6<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-201-499<br />
</td>
        <td>1-7/4-6/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>10<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-300-499<br />
</td>
        <td>1-11/8-6/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>10<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-100-599<br />
</td>
        <td>1-10/9-4/3<br />
</td>
        <td>otonal<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-499-599<br />
</td>
        <td>1-6/5-4/3<br />
</td>
        <td>utonal<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-201-798<br />
</td>
        <td>1-7/4-7/6<br />
</td>
        <td>utonal<br />
</td>
        <td>16<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-599-798<br />
</td>
        <td>1-4/3-7/6<br />
</td>
        <td>otonal<br />
</td>
        <td>16<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-101-899<br />
</td>
        <td>1-11/7-11/6<br />
</td>
        <td>utonal<br />
</td>
        <td>18<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-300-899<br />
</td>
        <td>1-11/8-11/6<br />
</td>
        <td>utonal<br />
</td>
        <td>18<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-599-899<br />
</td>
        <td>1-4/3-11/6<br />
</td>
        <td>otonal<br />
</td>
        <td>18<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-798-899<br />
</td>
        <td>1-7/6-11/6<br />
</td>
        <td>otonal<br />
</td>
        <td>18<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-201-1098<br />
</td>
        <td>1-7/4-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-300-1098<br />
</td>
        <td>1-11/8-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-499-1098<br />
</td>
        <td>1-6/5-8/5<br />
</td>
        <td>otonal<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-599-1098<br />
</td>
        <td>1-4/3-8/5<br />
</td>
        <td>utonal<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-798-1098<br />
</td>
        <td>1-7/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-899-1098<br />
</td>
        <td>1-11/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-100-1198<br />
</td>
        <td>1-10/9-16/9<br />
</td>
        <td>otonal<br />
</td>
        <td>24<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-599-1198<br />
</td>
        <td>1-4/3-16/9<br />
</td>
        <td>ambitonal<br />
</td>
        <td>24<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-1098-1198<br />
</td>
        <td>1-8/5-16/9<br />
</td>
        <td>utonal<br />
</td>
        <td>24<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-101-1297<br />
</td>
        <td>1-11/7-7/5<br />
</td>
        <td>werckismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-201-1297<br />
</td>
        <td>1-7/4-7/5<br />
</td>
        <td>utonal<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-499-1297<br />
</td>
        <td>1-6/5-7/5<br />
</td>
        <td>otonal<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-798-1297<br />
</td>
        <td>1-7/6-7/5<br />
</td>
        <td>utonal<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-1098-1297<br />
</td>
        <td>1-8/5-7/5<br />
</td>
        <td>otonal<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-1198-1297<br />
</td>
        <td>1-16/9-7/5<br />
</td>
        <td>werckismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-101-1396<br />
</td>
        <td>1-11/7-11/10<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-300-1396<br />
</td>
        <td>1-11/8-11/10<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-499-1396<br />
</td>
        <td>1-6/5-11/10<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-899-1396<br />
</td>
        <td>1-11/6-11/10<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-1098-1396<br />
</td>
        <td>1-8/5-11/10<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-1297-1396<br />
</td>
        <td>1-7/5-11/10<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-100-1397<br />
</td>
        <td>1-10/9-14/9<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-201-1397<br />
</td>
        <td>1-7/4-14/9<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-599-1397<br />
</td>
        <td>1-4/3-14/9<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-798-1397<br />
</td>
        <td>1-7/6-14/9<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-1198-1397<br />
</td>
        <td>1-16/9-14/9<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-1297-1397<br />
</td>
        <td>1-7/5-14/9<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-100-1496<br />
</td>
        <td>1-10/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-101-1496<br />
</td>
        <td>1-11/7-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-201-1496<br />
</td>
        <td>1-7/4-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-300-1496<br />
</td>
        <td>1-11/8-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-599-1496<br />
</td>
        <td>1-4/3-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-899-1496<br />
</td>
        <td>1-11/6-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-1198-1496<br />
</td>
        <td>1-16/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-1297-1496<br />
</td>
        <td>1-7/5-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-1396-1496<br />
</td>
        <td>1-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-1397-1496<br />
</td>
        <td>1-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
        <td>Complexity<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-101-201-300<br />
</td>
        <td>1-11/7-7/4-11/8<br />
</td>
        <td>werckismic<br />
</td>
        <td>6<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-201-300-499<br />
</td>
        <td>1-7/4-11/8-6/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>10<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-101-300-899<br />
</td>
        <td>1-11/7-11/8-11/6<br />
</td>
        <td>utonal<br />
</td>
        <td>18<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-599-798-899<br />
</td>
        <td>1-4/3-7/6-11/6<br />
</td>
        <td>otonal<br />
</td>
        <td>18<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-201-300-1098<br />
</td>
        <td>1-7/4-11/8-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-201-499-1098<br />
</td>
        <td>1-7/4-6/5-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-300-499-1098<br />
</td>
        <td>1-11/8-6/5-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-499-599-1098<br />
</td>
        <td>1-6/5-4/3-8/5<br />
</td>
        <td>ambitonal<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-201-798-1098<br />
</td>
        <td>1-7/4-7/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-599-798-1098<br />
</td>
        <td>1-4/3-7/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-300-899-1098<br />
</td>
        <td>1-11/8-11/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-599-899-1098<br />
</td>
        <td>1-4/3-11/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-798-899-1098<br />
</td>
        <td>1-7/6-11/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-100-599-1198<br />
</td>
        <td>1-10/9-4/3-16/9<br />
</td>
        <td>otonal<br />
</td>
        <td>24<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-599-1098-1198<br />
</td>
        <td>1-4/3-8/5-16/9<br />
</td>
        <td>utonal<br />
</td>
        <td>24<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-101-201-1297<br />
</td>
        <td>1-11/7-7/4-7/5<br />
</td>
        <td>werckismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-201-499-1297<br />
</td>
        <td>1-7/4-6/5-7/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-201-798-1297<br />
</td>
        <td>1-7/4-7/6-7/5<br />
</td>
        <td>utonal<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-201-1098-1297<br />
</td>
        <td>1-7/4-8/5-7/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-499-1098-1297<br />
</td>
        <td>1-6/5-8/5-7/5<br />
</td>
        <td>otonal<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-798-1098-1297<br />
</td>
        <td>1-7/6-8/5-7/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-1098-1198-1297<br />
</td>
        <td>1-8/5-16/9-7/5<br />
</td>
        <td>werckismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-101-300-1396<br />
</td>
        <td>1-11/7-11/8-11/10<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-300-499-1396<br />
</td>
        <td>1-11/8-6/5-11/10<br />
</td>
        <td>keenanismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-101-899-1396<br />
</td>
        <td>1-11/7-11/6-11/10<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-300-899-1396<br />
</td>
        <td>1-11/8-11/6-11/10<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-300-1098-1396<br />
</td>
        <td>1-11/8-8/5-11/10<br />
</td>
        <td>keenanismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-499-1098-1396<br />
</td>
        <td>1-6/5-8/5-11/10<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-899-1098-1396<br />
</td>
        <td>1-11/6-8/5-11/10<br />
</td>
        <td>keenanismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-101-1297-1396<br />
</td>
        <td>1-11/7-7/5-11/10<br />
</td>
        <td>werckismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-499-1297-1396<br />
</td>
        <td>1-6/5-7/5-11/10<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-1098-1297-1396<br />
</td>
        <td>1-8/5-7/5-11/10<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-100-201-1397<br />
</td>
        <td>1-10/9-7/4-14/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-100-599-1397<br />
</td>
        <td>1-10/9-4/3-14/9<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-201-798-1397<br />
</td>
        <td>1-7/4-7/6-14/9<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-599-798-1397<br />
</td>
        <td>1-4/3-7/6-14/9<br />
</td>
        <td>ambitonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-100-1198-1397<br />
</td>
        <td>1-10/9-16/9-14/9<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-599-1198-1397<br />
</td>
        <td>1-4/3-16/9-14/9<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-201-1297-1397<br />
</td>
        <td>1-7/4-7/5-14/9<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-798-1297-1397<br />
</td>
        <td>1-7/6-7/5-14/9<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-1198-1297-1397<br />
</td>
        <td>1-16/9-7/5-14/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-100-201-1496<br />
</td>
        <td>1-10/9-7/4-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-101-201-1496<br />
</td>
        <td>1-11/7-7/4-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-101-300-1496<br />
</td>
        <td>1-11/7-11/8-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-201-300-1496<br />
</td>
        <td>1-7/4-11/8-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-100-599-1496<br />
</td>
        <td>1-10/9-4/3-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-101-899-1496<br />
</td>
        <td>1-11/7-11/6-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-300-899-1496<br />
</td>
        <td>1-11/8-11/6-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-599-899-1496<br />
</td>
        <td>1-4/3-11/6-11/9<br />
</td>
        <td>ambitonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-100-1198-1496<br />
</td>
        <td>1-10/9-16/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-599-1198-1496<br />
</td>
        <td>1-4/3-16/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-101-1297-1496<br />
</td>
        <td>1-11/7-7/5-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-201-1297-1496<br />
</td>
        <td>1-7/4-7/5-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-1198-1297-1496<br />
</td>
        <td>1-16/9-7/5-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-101-1396-1496<br />
</td>
        <td>1-11/7-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-300-1396-1496<br />
</td>
        <td>1-11/8-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-899-1396-1496<br />
</td>
        <td>1-11/6-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-1297-1396-1496<br />
</td>
        <td>1-7/5-11/10-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-100-1397-1496<br />
</td>
        <td>1-10/9-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>0-201-1397-1496<br />
</td>
        <td>1-7/4-14/9-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>0-599-1397-1496<br />
</td>
        <td>1-4/3-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>0-1198-1397-1496<br />
</td>
        <td>1-16/9-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>0-1297-1397-1496<br />
</td>
        <td>1-7/5-14/9-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
        <td>Complexity<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-201-300-499-1098<br />
</td>
        <td>1-7/4-11/8-6/5-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-599-798-899-1098<br />
</td>
        <td>1-4/3-7/6-11/6-8/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>22<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-201-499-1098-1297<br />
</td>
        <td>1-7/4-6/5-8/5-7/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-201-798-1098-1297<br />
</td>
        <td>1-7/4-7/6-8/5-7/5<br />
</td>
        <td>keenanismic<br />
</td>
        <td>26<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-101-300-899-1396<br />
</td>
        <td>1-11/7-11/8-11/6-11/10<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-300-499-1098-1396<br />
</td>
        <td>1-11/8-6/5-8/5-11/10<br />
</td>
        <td>keenanismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-300-899-1098-1396<br />
</td>
        <td>1-11/8-11/6-8/5-11/10<br />
</td>
        <td>keenanismic<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-499-1098-1297-1396<br />
</td>
        <td>1-6/5-8/5-7/5-11/10<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-100-599-1198-1397<br />
</td>
        <td>1-10/9-4/3-16/9-14/9<br />
</td>
        <td>otonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-201-798-1297-1397<br />
</td>
        <td>1-7/4-7/6-7/5-14/9<br />
</td>
        <td>utonal<br />
</td>
        <td>28<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-101-201-300-1496<br />
</td>
        <td>1-11/7-7/4-11/8-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-101-300-899-1496<br />
</td>
        <td>1-11/7-11/8-11/6-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-100-599-1198-1496<br />
</td>
        <td>1-10/9-4/3-16/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-101-201-1297-1496<br />
</td>
        <td>1-11/7-7/4-7/5-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-101-300-1396-1496<br />
</td>
        <td>1-11/7-11/8-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-101-899-1396-1496<br />
</td>
        <td>1-11/7-11/6-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-300-899-1396-1496<br />
</td>
        <td>1-11/8-11/6-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-101-1297-1396-1496<br />
</td>
        <td>1-11/7-7/5-11/10-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-100-201-1397-1496<br />
</td>
        <td>1-10/9-7/4-14/9-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-100-599-1397-1496<br />
</td>
        <td>1-10/9-4/3-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-100-1198-1397-1496<br />
</td>
        <td>1-10/9-16/9-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-599-1198-1397-1496<br />
</td>
        <td>1-4/3-16/9-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-201-1297-1397-1496<br />
</td>
        <td>1-7/4-7/5-14/9-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-1198-1297-1397-1496<br />
</td>
        <td>1-16/9-7/5-14/9-11/9<br />
</td>
        <td>werckismic<br />
</td>
        <td>30<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
        <td>Complexity<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-101-300-899-1396-1496<br />
</td>
        <td>1-11/7-11/8-11/6-11/10-11/9<br />
</td>
        <td>utonal<br />
</td>
        <td>30<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-100-599-1198-1397-1496<br />
</td>
        <td>1-10/9-4/3-16/9-14/9-11/9<br />
</td>
        <td>otonal<br />
</td>
        <td>30<br />
</td>
    </tr>
</table>

</body></html>