Petrtri
Petrtri is an oneirotonic-based temperament or harmonic framework, based on the oneirotonic MOS with period 1\1 and a generator chain with generator a subfourth between 21edo's 8\21 (457.14¢) and 13edo's 5\13 (461.54¢).
Tuning range
Petrtri tunings (with generator between 8\21 and 5\13) have less extreme step ratios than A-Team tunings, between 3/2 and 2/1. The 8\21-to-5\13 range of oneirotonic tunings remains relatively unexplored. In these tunings,
- the large step of oneirotonic tends to be intermediate in size between 10/9 and 11/10; the small step size is a semitone close to 17/16, about 92¢ to 114¢.
- The major mosthird (made of two large steps) in these tunings tends to be more of a neutral third, ranging from 6\21 (342¢) to 4\13 (369¢), and the temperament interprets it as both 11/9 and 16/13.
The three major edos in this range, 13edo, 21edo and 34edo, all nominally support petrtri.
- 13edo nominally supports it, but its approximation of 9:10:11:13 is quite weak and tempers 11/9 to a 369¢ submajor third, which may not be desirable.
- 21edo is a much better petrtri tuning than 13edo, in terms of approximating 9:10:11:13. 21edo will serve those who like the combination of neogothic minor thirds (285.71¢) and Baroque diatonic semitones (114.29¢, close to quarter-comma meantone's 117.11¢).
- 34edo is close to optimal for the temperament, with a generator only 0.33¢ flat of the 2.5.9.11.13.17 POTE petrtri generator of 459.1502¢ and 0.73¢ sharp of the 2.9/5.11/5.13/5 POTE (i.e. optimal for the chord 9:10:11:13, spelled as R-M2-M3-M5 in oneirotonic intervals) petrtri generator of 458.0950¢.
- If you only care about optimizing 9:10:11:13, then 55edo's 21\55 (458.182¢) is even better, but 55 is a bit big for a usable edo.
The sizes of the generator, large step and small step of oneirotonic are as follows in various petrtri tunings.
13edo | 21edo | 34edo | Optimal (2.5.9.11.13.17 POTE) tuning | JI intervals represented (2.5.9.11.13.17 subgroup) | |
---|---|---|---|---|---|
generator (g) | 5\13, 461.54 | 8\21, 457.14 | 13\34, 458.82 | 459.15 | 13/10, 17/13, 22/17 |
L (3g - octave) | 2\13, 184.62 | 3\21, 171.43 | 5\34, 176.47 | 177.45 | 10/9, 11/10 |
s (-5g + 2 octaves) | 1\13, 92.31 | 2\21, 114.29 | 3\34, 105.88 | 104.25 | 18/17, 17/16 |