65edo

Revision as of 12:40, 12 December 2019 by Jkarimak (talk | contribs) (Intervals: Removed pions column)

65 tone equal temperament

65edo divides the octave into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma. In the 7-limit, there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.

65edo approximates the intervals 3/2, 5/4, 11/8 and 19/16 well, so that it does a good job representing the 2.3.5.11.19 just intonation subgroup. To this one may want to add 13/8 and 17/16, giving the 19-limit no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit 2*65 subgroup 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as 130edo.

65edo contains 13edo as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see Rubble: a Xenuke Unfolded.

Intervals

Degree Size
Cents 7mus
0
1 18.4615 23.6308 (17.A17A16)
2 36.9231 47.2615 (2F.42F416)
3 55.3846 70.8923 (46.E46E16)
4 73.84615 94.5231 (5E.85E816)
5 92.3077 118.15385 (76.276216)
6 110.7692 141.7846 (8D.C8DD16)
7 129.2308 165.4154 (A5.6A5716)
8 147.6923 189.04615 (BD.0BD116)
9 166.15385 212.6769 (D4.AD4B16
10 184.6154 236.3077 (EC.4EC516)
11 203.0769 259.9385 (103.F03F16)
12 221.5385 283.5692 (11B.91B916)
13 240 307.2 (133.333316)
14 258.4615 330.8308 (14A.D4AD16)
15 276.9231 354.4615 (162.762716)
16 295.3846 378.0923 (17A.17A1816)
17 313.84615 401.7231 (191.B91C16)
18 332.3077 425.35385 (1A9.5A9616)
19 350.7692 448.9846 (1C0.FC116)
20 369.2308 472.6154 (1D8.9D8A16)
21 387.6923 496.24615 (1F0.3F0416)
22 406.15385 519.8769 (207.E07E16)
23 424.6154 543.5077 (21F.81F816)
24 443.0769 567.1385 (237.237216)
25 461.5385 590.7692 (24E.C4ED16)
26 480 614.4 (266.666616)
27 498.4615 638.0308 (27E07E0816)
28 516.9231 661.6615 (295.A95B16)
29 535.3846 685.2923 (2AD.4AD416)
30 553.84615 708.9231 (2C4.EC4F16)
31 572.3077 732.55385 (2DC.8DC916)
32 590.7692 756.1846 (2F4.2F4216)
33 609.2308 779.8154 (30B.D0BD16)
34 627.6923 803.44615 (323.723716)
35 646.1538 827.0769 (33B.13B116)
36 664.6154 850.7077 (352.B52B16)
37 683.0769 874.3385 (36A.56A516)
38 701.5385 897.9692 (381.F81F816)
39 720 921.6 (399.999A16)
40 738.4615 945.2308 (3B1.3B1316)
41 756.9231 968.8615 (3C8.DC8E16)
42 775.3846 992.4923 (3E0.7E0816)
43 793.84615 1016.1231 (3F8.1F8216)
44 812.3077 1039.75385 (40F.C0FC16)
45 830.7692 1063.3846 (427.627616)
46 849.2308 1087.0154 (43F.03F16)
47 867.6923 1110.64615 (456.A56A16)
48 886.15385 1134.2769 (46E.46E416)
49 904.6154 1157.9077 (485.E85E816)
50 923.0769 1181.53845 (49D.89D916)
51 941.5385 1205.1692 (4B5.2B5316)
52 960 1228.8 (4CC.CCCD16)
53 978.4615 1252.4308 (4E4.6E4716)
54 996.9231 1276.0615 (4FC.0FC116)
55 1015.3846 1299.6923 (513.B13B16)
56 1033.84615 1323.3231 (52B.52B516)
57 1052.3077 1346.95385 (542,F42F16)
58 1070.7692 1370.5846 (55A.95A916)
59 1089.2308 1394.2154 (572.372316)
60 1107.6923 1417.84615 (589.D89E16)
61 1126.15385 1441.4769 (5A1.7A1816)
62 1144.6154 1465.1077 (5B9.1B9216)
63 1163.0769 1488.7385 (5D0.BD0C16)
64 1181.5385 1512.3692 (5E8.5E8616)
65 1200 1536 (60016)

Scales

photia7

photia12