User:BudjarnLambeth/Sandbox2
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch
Pianos are frequently tuned with stretched octaves anyway due to the slight inharmonicity inherent in their strings, which makes 19edo a promising option for pianos with split sharps. Octave stretching also means that an out-of-tune interval can be replaced with a compounded or inverted version of it which is near-just. For example, if we are using 49ed6 or 30ed3 (which tune 6:1 and 3:1 just and have octaves stretched by 2.8 and 4.57 ¢, respectively), then we have near-just minor thirds (6:5), compound major thirds (as 5:1), and compound fifths (as 6:1), giving us versions of everything in the 5-limit tonality diamond. The compound major and minor triads (1:5:6 and 30:6:5) are near-just as well.
What follows is a comparison of stretched-octave 19edo tunings.
- 19edo
- Step size: 63.158 ¢, octave size: 1200.0 ¢
Pure-octaves 19edo approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -7.2 | +0.0 | -7.4 | -7.2 | -21.5 | +0.0 | -14.4 | -7.4 | +17.1 | -7.2 |
Relative (%) | +0.0 | -11.4 | +0.0 | -11.7 | -11.4 | -34.0 | +0.0 | -22.9 | -11.7 | +27.1 | -11.4 | |
Steps (reduced) |
19 (0) |
30 (11) |
38 (0) |
44 (6) |
49 (11) |
53 (15) |
57 (0) |
60 (3) |
63 (6) |
66 (9) |
68 (11) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.53 | -2.51 | -1.95 | +0.00 | +2.41 | -1.80 | -0.67 | -1.05 | +2.90 | -1.84 | -3.01 | -0.90 |
Relative (%) | -8.4 | -39.7 | -30.9 | +0.0 | +38.2 | -28.6 | -10.6 | -16.6 | +46.0 | -29.2 | -47.7 | -14.3 | |
Steps (reduced) |
703 (133) |
723 (153) |
742 (172) |
760 (0) |
777 (17) |
792 (32) |
807 (47) |
821 (61) |
835 (75) |
847 (87) |
859 (99) |
871 (111) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 2.3.5.11 WE tuning and 2.3.5.11 TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.6 | -6.2 | +1.3 | -5.9 | -5.5 | -19.6 | +1.9 | -12.4 | -5.2 | +19.4 | -4.9 |
Relative (%) | +1.0 | -9.8 | +2.1 | -9.3 | -8.8 | -31.1 | +3.1 | -19.6 | -8.3 | +30.6 | -7.8 | |
Step | 19 | 30 | 38 | 44 | 49 | 53 | 57 | 60 | 63 | 66 | 68 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -17.1 | -19.0 | -12.1 | +2.6 | +24.0 | -11.7 | +21.0 | -4.6 | -25.8 | +20.0 | +6.2 | -4.3 |
Relative (%) | -27.0 | -30.1 | -19.1 | +4.1 | +38.0 | -18.6 | +33.3 | -7.2 | -40.9 | +31.7 | +9.9 | -6.7 | |
Step | 70 | 72 | 74 | 76 | 78 | 79 | 81 | 82 | 83 | 85 | 86 | 87 |
- Step size: 63.291 ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.5 | -3.2 | +5.1 | -1.5 | -0.7 | -14.4 | +7.6 | -6.5 | +1.0 | +25.9 | +1.8 |
Relative (%) | +4.0 | -5.1 | +8.0 | -2.4 | -1.1 | -22.8 | +12.0 | -10.2 | +1.6 | +40.9 | +2.9 | |
Step | 19 | 30 | 38 | 44 | 49 | 53 | 57 | 60 | 63 | 66 | 68 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.2 | -11.9 | -4.7 | +10.1 | -31.5 | -3.9 | +29.1 | +3.5 | -17.6 | +28.4 | +14.8 | +4.4 |
Relative (%) | -16.0 | -18.8 | -7.5 | +16.0 | -49.8 | -6.2 | +45.9 | +5.6 | -27.9 | +44.9 | +23.3 | +6.9 | |
Step | 70 | 72 | 74 | 76 | 77 | 79 | 81 | 82 | 83 | 85 | 86 | 87 |
- Step size: NNN ¢, octave size: 1202.8 ¢
_ing the octave of 19edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 49ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.8 | -2.8 | +5.6 | -0.9 | +0.0 | -13.7 | +8.4 | -5.6 | +1.9 | +26.8 | +2.8 |
Relative (%) | +4.4 | -4.4 | +8.8 | -1.4 | +0.0 | -21.6 | +13.3 | -8.8 | +3.0 | +42.4 | +4.4 | |
Steps (reduced) |
19 (19) |
30 (30) |
38 (38) |
44 (44) |
49 (0) |
53 (4) |
57 (8) |
60 (11) |
63 (14) |
66 (17) |
68 (19) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.2 | -10.9 | -3.7 | +11.2 | -30.5 | -2.8 | +30.2 | +4.7 | -16.4 | +29.6 | +16.0 | +5.6 |
Relative (%) | -14.5 | -17.1 | -5.8 | +17.7 | -48.1 | -4.4 | +47.7 | +7.4 | -26.0 | +46.8 | +25.2 | +8.8 | |
Steps (reduced) |
70 (21) |
72 (23) |
74 (25) |
76 (27) |
77 (28) |
79 (30) |
81 (32) |
82 (33) |
83 (34) |
85 (36) |
86 (37) |
87 (38) |
- Step size: 63.331 ¢, octave size: 1203.3 ¢
_ing the octave of 19edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 65zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.3 | -2.0 | +6.6 | +0.3 | +1.3 | -12.3 | +9.9 | -4.1 | +3.5 | +28.5 | +4.6 |
Relative (%) | +5.2 | -3.2 | +10.4 | +0.4 | +2.0 | -19.4 | +15.6 | -6.4 | +5.6 | +45.0 | +7.2 | |
Step | 19 | 30 | 38 | 44 | 49 | 53 | 57 | 60 | 63 | 66 | 68 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.4 | -9.0 | -1.8 | +13.2 | -28.5 | -0.8 | -31.0 | +6.8 | -14.3 | -31.5 | +18.2 | +7.8 |
Relative (%) | -11.6 | -14.2 | -2.8 | +20.8 | -45.0 | -1.2 | -49.0 | +10.8 | -22.6 | -49.8 | +28.7 | +12.4 | |
Step | 70 | 72 | 74 | 76 | 77 | 79 | 80 | 82 | 83 | 84 | 86 | 87 |
- Step size: NNN ¢, octave size: 1204.6 ¢
_ing the octave of 19edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 30edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.6 | +0.0 | +9.1 | +3.2 | +4.6 | -8.7 | +13.7 | +0.0 | +7.8 | -30.4 | +9.1 |
Relative (%) | +7.2 | +0.0 | +14.4 | +5.1 | +7.2 | -13.7 | +21.6 | +0.0 | +12.3 | -48.0 | +14.4 | |
Steps (reduced) |
19 (19) |
30 (0) |
38 (8) |
44 (14) |
49 (19) |
53 (23) |
57 (27) |
60 (0) |
63 (3) |
65 (5) |
68 (8) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | -4.1 | +3.2 | +18.3 | -23.3 | +4.6 | -25.6 | +12.4 | -8.7 | -25.8 | +24.0 | +13.7 |
Relative (%) | -4.2 | -6.5 | +5.1 | +28.8 | -36.7 | +7.2 | -40.4 | +19.5 | -13.7 | -40.8 | +37.9 | +21.6 | |
Steps (reduced) |
70 (10) |
72 (12) |
74 (14) |
76 (16) |
77 (17) |
79 (19) |
80 (20) |
82 (22) |
83 (23) |
84 (24) |
86 (26) |
87 (27) |
- Step size: NNN ¢, octave size: 1212.5 ¢
_ing the octave of 19edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 11edf does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.5 | +12.5 | +24.9 | +21.5 | +24.9 | +13.3 | -26.4 | +24.9 | -29.8 | -3.4 | -26.4 |
Relative (%) | +19.5 | +19.5 | +39.1 | +33.7 | +39.1 | +20.9 | -41.4 | +39.1 | -46.8 | -5.3 | -41.4 | |
Steps (reduced) |
19 (8) |
30 (8) |
38 (5) |
44 (0) |
49 (5) |
53 (9) |
56 (1) |
60 (5) |
62 (7) |
65 (10) |
67 (1) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +26.5 | +25.8 | -29.8 | -13.9 | +8.7 | -26.4 | +7.6 | -17.4 | +25.8 | +9.1 | -4.1 | -13.9 |
Relative (%) | +41.5 | +40.4 | -46.8 | -21.8 | +13.7 | -41.4 | +11.9 | -27.2 | +40.4 | +14.2 | -6.4 | -21.8 | |
Steps (reduced) |
70 (4) |
72 (6) |
73 (7) |
75 (9) |
77 (0) |
78 (1) |
80 (3) |
81 (4) |
83 (6) |
84 (7) |
85 (8) |
86 (9) |