743edo

Revision as of 19:32, 26 December 2024 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|743}} == Theory == 743et is only consistent to the 3-odd-limit and its harmonic 3 is about halfway its steps. It can be used in the...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
← 742edo 743edo 744edo →
Prime factorization 743 (prime)
Step size 1.61507 ¢ 
Fifth 435\743 (702.557 ¢)
Semitones (A1:m2) 73:54 (117.9 ¢ : 87.21 ¢)
Dual sharp fifth 435\743 (702.557 ¢)
Dual flat fifth 434\743 (700.942 ¢)
Dual major 2nd 126\743 (203.499 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

743et is only consistent to the 3-odd-limit and its harmonic 3 is about halfway its steps. It can be used in the 2.9.5.7.11.13.17.19.23.29 subgroup, tempering out 2025/2024, 1089/1088, 67392/67375, 35750/35721, 14400/14399, 15840/15827, 3520/3519, 1521/1520 and 2465/2464.

Odd harmonics

Approximation of odd harmonics in 743edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.602 -0.311 +0.219 -0.411 -0.578 -0.689 +0.291 +0.024 -0.339 -0.794 -0.011
Relative (%) +37.3 -19.3 +13.5 -25.4 -35.8 -42.7 +18.0 +1.5 -21.0 -49.2 -0.7
Steps
(reduced)
1178
(435)
1725
(239)
2086
(600)
2355
(126)
2570
(341)
2749
(520)
2903
(674)
3037
(65)
3156
(184)
3263
(291)
3361
(389)

Subsets and supersets

743edo is the 132nd prime edo. 1486edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [-2355 743 [743 2355]] 0.0648 0.0648 4.01
2.9.5 32805/32768, [-120 -83 165 [743 2355 1725]] 0.0878 0.0621 3.85
2.9.5.7 32805/32768, 30517578125/30474952704, 247669456896/247165842875 [743 2355 1725 2086]] 0.0464 0.0897 5.55
2.9.5.7.11 32805/32768, 1890625/1889568, 539055/537824, 102487/102400 [743 2355 1725 2086 2570]] 0.0705 0.0936 5.80
2.9.5.7.11.13 67392/67375, 35750/35721, 32805/32768, 91125/91091, 557568/557375 [743 2355 1725 2086 2570 2749]] 0.0898 0.0957 5.93
2.9.5.7.11.13.17 1089/1088, 67392/67375, 35750/35721, 14400/14399, 61965/61952, 75735/75712 [743 2355 1725 2086 2570 2749 3037]] 0.0761 0.0947 5.86