← 326edo 327edo 328edo →
Prime factorization 3 × 109
Step size 3.66972 ¢ 
Fifth 191\327 (700.917 ¢)
Semitones (A1:m2) 29:26 (106.4 ¢ : 95.41 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

327edo is consistent to the 7-odd-limit, though it has a reasonable approximation to the full 13-limit in its patent val. The equal temperament tempers out the semicomma in the 5-limit; 16875/16807, 19683/19600, 250047/250000, and 2100875/2097152 in the 7-limit; 540/539, 1375/1372, 3025/3024, 8019/8000, 35937/35840, 46656/46585, 102487/102400, 137781/137500, and 160083/160000 in the 11-limit; and 625/624, 1575/1573, 1716/1715, 2200/2197, 4225/4224, and 10648/10647 in the 13-limit. It supports mirkat, pnict, and the subgroup temperament petrtri.

Odd harmonics

Approximation of odd harmonics in 327edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.04 -0.99 -0.02 +1.59 -0.86 -0.16 +1.64 +1.47 -0.27 -1.06 -0.75
Relative (%) -28.3 -27.0 -0.5 +43.5 -23.4 -4.4 +44.7 +40.0 -7.2 -28.8 -20.5
Steps
(reduced)
518
(191)
759
(105)
918
(264)
1037
(56)
1131
(150)
1210
(229)
1278
(297)
1337
(29)
1389
(81)
1436
(128)
1479
(171)

Subsets and supersets

Since 327 factors into 3 × 109, 327edo has 3edo and 109edo as its subsets.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-518 327 | [327 518]] | 0.3273 | 0.3274 | 8.92 |- | 2.3.5 | 2109375/2097152, [-20 39 -18 | [327 518 759]] | 0.3608 | 0.2715 | 7.40 |- | 2.3.5.7 | 16875/16807, 19683/19600, 2100875/2097152 | [327 518 759 918]] | 0.2722 | 0.2807 | 7.65 |- | 2.3.5.7.11 | 540/539, 1375/1372, 8019/8000, 2100875/2097152 | [327 518 759 918 1131]] | 0.2674 | 0.2512 | 6.85 |- | 2.3.5.7.11.13 | 540/539, 625/624, 1575/1573, 2200/2197, 8019/8000 | [327 518 759 918 1131 1210]] | 0.2301 | 0.2441 | 6.65 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 74\327 | 271.56 | 75/64 | Orson |- | 3 | 44\327 | 161.47 | 192/175 | Pnict |- | 3 | 50\327 | 183.49 | 10/9 | Mirkat Template:Rank-2 end Template:Orf