307edo

Revision as of 17:57, 13 February 2024 by Francium (talk | contribs) (+categories)
← 306edo 307edo 308edo →
Prime factorization 307 (prime)
Step size 3.90879 ¢ 
Fifth 180\307 (703.583 ¢)
Semitones (A1:m2) 32:21 (125.1 ¢ : 82.08 ¢)
Dual sharp fifth 180\307 (703.583 ¢)
Dual flat fifth 179\307 (699.674 ¢)
Dual major 2nd 52\307 (203.257 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

307et tempers out 1220703125/1219784832, 48828125/48771072, 95703125/95551488 and 2401/2400 in the 7-limit; 100663296/100656875, 939524096/935859375, 16384/16335, 226492416/226474325, 2359296/2358125, 6250/6237, 172032/171875, 42875/42768, 4302592/4296875, 15488/15435, 3388/3375, 766656/765625, 166375/165888, 391314/390625, 3294225/3294172, 43923/43904 and 102487/102400 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 307edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +1.63 +0.66 +0.56 -0.65 -0.18 -0.14 -1.62 +0.58 -0.44 -1.73 +1.04
Relative (%) +41.7 +16.8 +14.2 -16.7 -4.6 -3.5 -41.5 +14.9 -11.4 -44.1 +26.6
Steps
(reduced)
487
(180)
713
(99)
862
(248)
973
(52)
1062
(141)
1136
(215)
1199
(278)
1255
(27)
1304
(76)
1348
(120)
1389
(161)

Subsets and supersets

307edo is the 63rd prime edo. 614edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [-973 307 307 973] +0.1029 0.1030 2.64
2.9.5 32805/32768, [2 47 -65 307 973 713] -0.0257 0.2004 5.13
2.9.5.7 32805/32768, 118098/117649, 589824/588245 307 973 713 862] -0.0687 0.1889 4.87
2.9.5.7.11 5632/5625, 8019/8000, 32805/32768, 46656/46585 307 973 713 862 1062] -0.0447 0.1756 4.49
2.9.5.7.11.13 729/728, 1001/1000, 4096/4095, 6656/6655, 10648/10647 307 973 713 862 1062 1136] -0.0311 0.1632 4.18
2.9.5.7.11.13.17 729/728, 936/935, 1001/1000, 1377/1375, 2025/2023, 7744/7735 307 973 713 862 1062 1136 1255] -0.0470 0.1560 3.99

Music

Francium