User:Moremajorthanmajor/7L 2s (major tenth-equivalent)
This page is about a MOS scale with a period of 5/2 and 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
Name
Temperaments
Terra Rubra-Meantone
Subgroup: 5/2.2.3
Mapping: [⟨1 1 1], ⟨0 -2 -1]]
Optimal ET sequence: 9ed5/2, 16ed5/2, 25ed5/2
Terra Rubra-Superpyth
Subgroup: 18/7.2.3
Mapping: [⟨1 1 1], ⟨0 -2 -1]]
Optimal ET sequence: 7ed18/7, 16ed18/7, 23ed18/7
Scale tree
Generator | Generator size | ed16\12 (→ed4\3) | L | s | Comments | ||
---|---|---|---|---|---|---|---|
4\7 | 960 | 914.285… | 1 | 0 | |||
25\44 | 937.5 | 909.09 | 6 | 1 | |||
71\125 | 936.263… | 908.8 | 17 | 3 | |||
46\81 | 935.593… | 908.641… | 11 | 2 | |||
67\118 | 934.883… | 908.474… | 16 | 3 | |||
21\37 | 933.3 | 908.108 | 5 | 1 | |||
80\141 | 932.038… | 907.801… | 19 | 4 | |||
59\104 | 931.579… | 907.692… | 14 | 3 | |||
38\67 | 930.612… | 907.462… | 9 | 2 | |||
55\97 | 929.577… | 907.216… | 13 | 3 | |||
72\127 | 929.032… | 907.086… | 17 | 4 | |||
89\157 | 928.695… | 907.006… | 21 | 5 | |||
17\30 | 927.27 | 906.6 | 4 | 1 | |||
115\203 | 926.174… | 906.403… | 27 | 7 | |||
98\173 | 925.984… | 906.358… | 23 | 6 | |||
81\143 | 925.714… | 906.293… | 19 | 5 | |||
64\113 | 925.301… | 906.194… | 15 | 4 | |||
47\83 | 924.591… | 906.024… | 11 | 3 | |||
30\53 | 923.076… | 905.660… | 7 | 2 | |||
73\129 | 922.105… | 905.426… | 17 | 5 | |||
43\76 | 921.428… | 905.263… | 10 | 3 | |||
56\99 | 920.547… | 905.05 | 13 | 4 | |||
69\122 | 920 | 904.918… | 16 | 5 | |||
82\145 | 919.626… | 904.827… | 19 | 6 | |||
95\168 | 919.354… | 904.761… | 22 | 7 | |||
919.340… | 904.758… | L/s = π | |||||
108\191 | 919.148… | 904.712… | 25 | 8 | |||
121\214 | 918.987… | 904.672… | 28 | 9 | |||
134\237 | 918.857… | 904.642… | 31 | 10 | |||
13\23 | 917.647… | 904.347… | 3 | 1 | |||
100\177 | 916.030… | 903.954… | 23 | 8 | |||
87\154 | 915.789… | 903.896… | 20 | 7 | |||
74\131 | 915.463… | 903.816… | 17 | 6 | |||
61\108 | 915 | 903.703 | 14 | 5 | |||
48\85 | 914.286… | 903.529… | 11 | 4 | |||
913.820… | 903.415… | L/s = e | |||||
35\62 | 913.043… | 903.225… | 8 | 3 | |||
912.286… | 903.040… | Split φ superdiatonic relation | |||||
57\101 | 912 | 902.970… | 13 | 5 | |||
79\140 | 911.538… | 902.857… | 18 | 7 | |||
22\39 | 910.344… | 902.564… | 5 | 2 | |||
75\133 | 909.09 | 902.255… | 17 | 7 | |||
53\94 | 908.571… | 902.127… | 12 | 5 | |||
31\55 | 907.317… | 901.81 | 7 | 3 | |||
71\126 | 906.382… | 901.587… | 16 | 7 | |||
40\71 | 905.660… | 901.408… | 9 | 4 | |||
49\87 | 904.615… | 901.149… | 11 | 5 | |||
58\103 | 903.896… | 900.970… | 13 | 6 | |||
9\16 | 900 | 900 | 2 | 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper] | ||
59\105 | 896.202… | 899.047… | 13 | 7 | |||
50\89 | 895.522… | 898.876… | 11 | 6 | |||
41\73 | 894.54 | 898.630… | 9 | 5 | |||
32\57 | 893.023… | 898.245… | 7 | 4 | the 'Commatic' version of Terra Rubra, because its high accuracy of the 16/15 interval, the note '2b' | ||
892.459… | 898.102… | ||||||
55\98 | 891.891 | 897.959… | 12 | 7 | |||
23\41 | 890.323… | 897.560… | 5 | 3 | Golden Terra Rubra 1/5-tone | ||
83\148 | 889.285… | 897.297 | 18 | 11 | |||
60\107 | 888.8 | 897.196… | 13 | 8 | Golden Terra Rubra 1/13-tone | ||
888.643… | 897.133… | GOLDEN Terra Rubra (L/s = φ) | |||||
37\66 | 888 | 896.96 | 8 | 5 | Golden Terra Rubra 1/8-tone | ||
88\157 | 887.394… | 896.815… | 19 | 12 | |||
51\91 | 886.956… | 896.703… | 11 | 7 | |||
65\116 | 886.36 | 896.551… | 14 | 9 | |||
79\141 | 885.981… | 896.453… | 17 | 11 | |||
93\166 | 885.714… | 896.385… | 20 | 13 | |||
14\25 | 884.210… | 896 | 3 | 2 | Golden Terra Rubra 1/3-tone | ||
117\209 | 883.018… | 895.693… | 25 | 17 | |||
103\184 | 882.857… | 895.652… | 22 | 15 | |||
89\159 | 882.644… | 895.579… | 19 | 13 | |||
75\134 | 882.353… | 895.522… | 16 | 11 | |||
61\109 | 881.927… | 895.412… | 13 | 9 | |||
47\84 | 881.25 | 895.238… | 10 | 7 | |||
80\143 | 880.733… | 895.104… | 17 | 12 | |||
33\59 | 880 | 894.915… | 7 | 5 | |||
85\152 | 879.310… | 894.736… | 18 | 13 | |||
52\93 | 878.873… | 894.623… | 11 | 8 | |||
71\127 | 878.350… | 894.488… | 15 | 11 | |||
90\161 | 878.048… | 894.409… | 19 | 14 | |||
109\195 | 877.852… | 894.358… | 23 | 17 | |||
19\34 | 876.923… | 894.117… | 4 | 3 | |||
62\111 | 875.294… | 893.693 | 13 | 10 | |||
43\77 | 874.576… | 893.506… | 9 | 7 | |||
67\120 | 873.913… | 893.3 | 14 | 11 | |||
24\43 | 872.72 | 893.023… | 5 | 4 | |||
53\95 | 871.232… | 892.631… | 11 | 9 | |||
29\52 | 870 | 892.307… | 6 | 5 | |||
5\9 | 857.142… | 888.8 | 1 | 0 |
See also
7L 2s (5/2-equivalent) - idealized meantone tuning
7L 2s (18/7-equivalent) - idealized Archytas tuning