1051edo
Theory
1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376/184528125, 43923/43904 and 20614528/20588575 in the 11-limit. From a regular temperament perspective, 1051edo only has a consistency limit of 3 and does poorly with approximating the harmonics 5 and 7. However, 1051edo has a good representation of the 2.3.11.13.15.17.19.35 subgroup.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.233 | -0.396 | +0.537 | +0.467 | +0.157 | -0.185 | -0.162 | +0.087 | +0.489 | -0.372 | -0.301 |
Relative (%) | +20.4 | -34.6 | +47.0 | +40.9 | +13.7 | -16.2 | -14.2 | +7.7 | +42.8 | -32.6 | -26.4 | |
Steps (reduced) |
1666 (615) |
2440 (338) |
2951 (849) |
3332 (179) |
3636 (483) |
3889 (736) |
4106 (953) |
4296 (92) |
4465 (261) |
4616 (412) |
4754 (550) |
Subsets and supersets
1051edo is the 177th prime edo. 2102edo, which doubles it, gives a good correction to the harmonic 5. 4212edo, which quadruples it, gives a good correction to the harmonic 7.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [1666 -1051⟩ | ⟨1051 1666] | -0.0736 | 0.0736 | 6.45 |
2.3.5 | [-68 18 17⟩, [-26 -29 31⟩ | ⟨1051 1666 2440] (1051) | +0.0077 | 0.1298 | 11.4 |
2.3.5 | [40 7 -22⟩, [63 -50 7⟩ | ⟨1051 1666 2441] (1051c) | -0.1562 | 0.1313 | 11.5 |