38edo

Revision as of 13:45, 12 December 2019 by Jkarimak (talk | contribs) (38-EDO Intervals:: Removed pions column)

38 tone equal temperament

38edo divides the octave into 38 equal parts of 31.579 cents. Since 38 = 2*19, it can be thought of as two parallel 19edos. It tempers out the same 5-limit commas as 19, namely 81/80, 3125/3072 and 15625/15552. In the 7-limit, we can add 50/49, and tempering out 81/80 and 50/49 gives injera temperament, for which 38 is the optimal patent val. In the 11-limit, we can add 121/120 and 176/175.

38-EDO Intervals:

Step Size in
Cents 7mus
0 0.0000 0
1 31.57895 40.42105 (28.6BCA16)
2 63.1579 80.8421 (50.D79416)
3 94.7368 121.2632 (79.435E16)
4 126.3157 161.6843 (A1.AF2916)
5 157.8947 202.1053 (CA.1AF316)
6 189.4737 242.5263 (F2.86BD16)
7 221.0526 282.9474 (11A.F28716)
8 252.6316 323.3684 (143.5E5116)
9 284.2105 365.7895 (16B.CA1B16)
10 315.7895 404.2105 (194.35E516)
11 347.3684 444.6316 (1BC.A1AF16)
12 378.9474 485.0526 (1E5.0D7916)
13 410.5263 525.4737 (20D.794316)
14 442.1053 565.8947 (235.E50E16)
15 473.6843 606.3157 (25E.50D816)
16 505.2632 646.7368 (286.BCA216)
17 536.8421 687.1579 (2AF.286C16)
18 568.42105 727.57895 (2D7.943616)
19 600 768 (30016)
20 631.57895 808.42105 (328.6BCA16)
21 663.1579 848.8421 (350.D79416)
22 694.7368 889.2632 (379.435E16)
23 726.3157 929.6843 (3A1.AF2916)
24 757.8947 970.1053 (3CA.1AF316)
25 789.4737 1010.5263 (3F2.86BD16)
26 821.0526 1050.9474 (41A.F28716)
27 852.6316 1091.3684 (443.5E5116)
28 884.2105 1131.7895 (46B.CA1B16)
29 915.7895 1172.2105 (494.35E516)
30 947.3684 1212.6316 (4BC.A1AF16)
31 978.9474 1253.0526 (4E5.0D7916)
32 1010.5263 1293.4737 (50D.794316)
33 1042.1053 1333.8947 (535.E50E16)
34 1073.6843 1374.3157 (55E.50D816)
35 1105.2632 1414.7368 (586.BCA216)
36 1136.8421 1455.1579 (5AF.286C16)
37 1168.42105 1495.57895 (5D7.943616)
38 1200 1536 (60016)