User:BudjarnLambeth/Sandbox2
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
31edo can benefit from slightly stretching the octave, especially when using it as an 11-limit equal temperament. With the right amount of stretch we can find a slightly better 3rd harmonic and significantly better 11th harmonic at the expense of somewhat less accurate approximations of 5, 7, and 13.
What follows is a comparison of stretched-octave 31edo tunings.
- 31edo
- Step size: 38.710 ¢, octave size: 1200.0 ¢
Pure-octaves 31edo approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -5.2 | +0.0 | +0.8 | -5.2 | -1.1 | +0.0 | -10.4 | +0.8 | -9.4 | -5.2 |
Relative (%) | +0.0 | -13.4 | +0.0 | +2.0 | -13.4 | -2.8 | +0.0 | -26.8 | +2.0 | -24.2 | -13.4 | |
Steps (reduced) |
31 (0) |
49 (18) |
62 (0) |
72 (10) |
80 (18) |
87 (25) |
93 (0) |
98 (5) |
103 (10) |
107 (14) |
111 (18) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +11.1 | -1.1 | -4.4 | +0.0 | +11.2 | -10.4 | +12.2 | +0.8 | -6.3 | -9.4 | -8.9 | -5.2 |
Relative (%) | +28.6 | -2.8 | -11.4 | +0.0 | +28.9 | -26.8 | +31.4 | +2.0 | -16.2 | -24.2 | -23.0 | -13.4 | |
Steps (reduced) |
115 (22) |
118 (25) |
121 (28) |
124 (0) |
127 (3) |
129 (5) |
132 (8) |
134 (10) |
136 (12) |
138 (14) |
140 (16) |
142 (18) |
- Step size: 38.725 ¢, octave size: 1200.5 ¢
Stretching the octave of 31edo by around 0.5 ¢ results in slightly improved primes 3, 7 and 11, but slightly worse primes 2, 5 and 13. This approximates all harmonics up to 16 within 12.8 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.5 | -4.4 | +0.9 | +1.9 | -4.0 | +0.2 | +1.4 | -8.9 | +2.4 | -7.7 | -3.5 |
Relative (%) | +1.2 | -11.4 | +2.5 | +4.9 | -10.2 | +0.6 | +3.7 | -22.9 | +6.1 | -20.0 | -9.0 | |
Step | 31 | 49 | 62 | 72 | 80 | 87 | 93 | 98 | 103 | 107 | 111 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.8 | +0.7 | -2.5 | +1.9 | +13.1 | -8.4 | +14.2 | +2.8 | -4.2 | -7.3 | -6.8 | -3.0 |
Relative (%) | +33.2 | +1.9 | -6.6 | +4.9 | +33.9 | -21.7 | +36.6 | +7.3 | -10.8 | -18.8 | -17.5 | -7.8 | |
Step | 115 | 118 | 121 | 124 | 127 | 129 | 132 | 134 | 136 | 138 | 140 | 142 |
- Step size: 38.737 ¢, octave size: 1200.8 ¢
Stretching the octave of 31edo by slightly less than 1 ¢ results in slightly improved primes 3 and 11, but slightly worse primes 2, 5, 7 and 13. This approximates all harmonics up to 16 within 14.2 ¢. The tuning 127zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -3.8 | +1.7 | +2.8 | -3.0 | +1.3 | +2.5 | -7.7 | +3.6 | -6.5 | -2.1 |
Relative (%) | +2.2 | -9.9 | +4.4 | +7.1 | -7.7 | +3.3 | +6.6 | -19.8 | +9.3 | -16.7 | -5.5 | |
Step | 31 | 49 | 62 | 72 | 80 | 87 | 93 | 98 | 103 | 107 | 111 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.2 | +2.1 | -1.1 | +3.4 | +14.6 | -6.8 | +15.8 | +4.4 | -2.5 | -5.6 | -5.1 | -1.3 |
Relative (%) | +36.7 | +5.5 | -2.8 | +8.7 | +37.8 | -17.6 | +40.7 | +11.5 | -6.6 | -14.5 | -13.2 | -3.4 | |
Step | 115 | 118 | 121 | 124 | 127 | 129 | 132 | 134 | 136 | 138 | 140 | 142 |
- Step size: 38.748 ¢, octave size: 1201.2 ¢
Stretching the octave of 31edo by slightly more than 1 ¢ results in slightly improved primes 3 and 11, but slightly worse primes 2, 5 and 7, and much worse 13. This approximates all harmonics up to 16 within 15.5 ¢ Its 11-limit WE tuning and 11-limit TE tuning both do this, so does the tuning 111ed12.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | -3.3 | +2.4 | +3.5 | -2.1 | +2.3 | +3.6 | -6.6 | +4.7 | -5.3 | -0.9 |
Relative (%) | +3.1 | -8.5 | +6.1 | +9.1 | -5.5 | +5.8 | +9.2 | -17.0 | +12.2 | -13.6 | -2.4 | |
Step | 31 | 49 | 62 | 72 | 80 | 87 | 93 | 98 | 103 | 107 | 111 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.5 | +3.4 | +0.2 | +4.8 | +16.0 | -5.4 | +17.2 | +5.9 | -1.1 | -4.1 | -3.6 | +0.3 |
Relative (%) | +40.0 | +8.9 | +0.6 | +12.3 | +41.4 | -14.0 | +44.4 | +15.3 | -2.7 | -10.6 | -9.2 | +0.7 | |
Step | 115 | 118 | 121 | 124 | 127 | 129 | 132 | 134 | 136 | 138 | 140 | 142 |
- Step size: 38.774 ¢, octave size: 1202.0 ¢
Stretching the octave of 31edo by about 2 ¢ results in slightly improved primes 3 and 11, but slightly worse primes 2, 5 and 7, and much worse 13. This is approaching 2.239 ¢ - the most octave stretch 31edo can tolerate before the mapping of the 13th harmonic changes. This approximates all harmonics up to 16 within 18.5 ¢. The tuning 80ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.0 | -2.0 | +4.0 | +5.4 | +0.0 | +4.6 | +6.0 | -4.0 | +7.5 | -2.5 | +2.0 |
Relative (%) | +5.2 | -5.2 | +10.4 | +14.0 | +0.0 | +11.7 | +15.5 | -10.4 | +19.2 | -6.3 | +5.2 | |
Steps (reduced) |
31 (31) |
49 (49) |
62 (62) |
72 (72) |
80 (0) |
87 (7) |
93 (13) |
98 (18) |
103 (23) |
107 (27) |
111 (31) |
{{Harmonics in equal|80|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80ed6 (continued)}
- Step size: 38.815 ¢, octave size: 1203.3 ¢
Stretching the octave of 31edo by about 3.5 ¢ results in improved primes 3 and 11, especially 11, but slightly worse primes 2, 5, 7 and 13. This approximates all harmonics up to 16 within 15.6 ¢. The tuning 49edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.3 | +0.0 | +6.6 | +8.4 | +3.3 | +8.1 | +9.8 | +0.0 | +11.7 | +1.9 | +6.6 |
Relative (%) | +8.4 | +0.0 | +16.9 | +21.6 | +8.4 | +20.9 | +25.3 | +0.0 | +30.1 | +5.0 | +16.9 | |
Steps (reduced) |
31 (31) |
49 (0) |
62 (13) |
72 (23) |
80 (31) |
87 (38) |
93 (44) |
98 (0) |
103 (5) |
107 (9) |
111 (13) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.6 | +11.4 | +8.4 | +13.1 | -14.2 | +3.3 | -12.7 | +15.0 | +8.1 | +5.2 | +5.9 | +9.8 |
Relative (%) | -40.1 | +29.3 | +21.6 | +33.8 | -36.6 | +8.4 | -32.7 | +38.5 | +20.9 | +13.4 | +15.2 | +25.3 | |
Steps (reduced) |
114 (16) |
118 (20) |
121 (23) |
124 (26) |
126 (28) |
129 (31) |
131 (33) |
134 (36) |
136 (38) |
138 (40) |
140 (42) |
142 (44) |