205edt

Revision as of 09:52, 5 October 2024 by BudjarnLambeth (talk | contribs) (Intro inter harm)
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 204edt 205edt 206edt →
Prime factorization 5 × 41
Step size 9.27783 ¢ 
Octave 129\205edt (1196.84 ¢)
Consistency limit 3
Distinct consistency limit 3

205 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 205edt or 205ed3), is a nonoctave tuning system that divides the interval of 3/1 into 205 equal parts of about 9.28 ¢ each. Each step represents a frequency ratio of 31/205, or the 205th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.28 6.34
2 18.56 12.68
3 27.83 19.02 63/62
4 37.11 25.37 46/45, 47/46
5 46.39 31.71
6 55.67 38.05
7 64.94 44.39 27/26
8 74.22 50.73 47/45
9 83.5 57.07 43/41
10 92.78 63.41 19/18, 58/55
11 102.06 69.76 35/33, 52/49
12 111.33 76.1
13 120.61 82.44
14 129.89 88.78
15 139.17 95.12
16 148.45 101.46 49/45
17 157.72 107.8 23/21
18 167 114.15
19 176.28 120.49
20 185.56 126.83 69/62
21 194.83 133.17 47/42
22 204.11 139.51
23 213.39 145.85
24 222.67 152.2 33/29
25 231.95 158.54
26 241.22 164.88 54/47
27 250.5 171.22 52/45
28 259.78 177.56 43/37
29 269.06 183.9
30 278.33 190.24 27/23
31 287.61 196.59
32 296.89 202.93
33 306.17 209.27 37/31, 68/57
34 315.45 215.61 6/5
35 324.72 221.95 35/29, 41/34
36 334 228.29 57/47
37 343.28 234.63
38 352.56 240.98
39 361.84 247.32
40 371.11 253.66 57/46
41 380.39 260
42 389.67 266.34
43 398.95 272.68 34/27
44 408.22 279.02 19/15, 62/49
45 417.5 285.37 14/11
46 426.78 291.71
47 436.06 298.05 9/7
48 445.34 304.39
49 454.61 310.73
50 463.89 317.07 17/13
51 473.17 323.41 46/35
52 482.45 329.76
53 491.72 336.1
54 501 342.44
55 510.28 348.78 47/35
56 519.56 355.12
57 528.84 361.46 19/14
58 538.11 367.8
59 547.39 374.15
60 556.67 380.49
61 565.95 386.83 43/31
62 575.23 393.17 46/33
63 584.5 399.51
64 593.78 405.85
65 603.06 412.2
66 612.34 418.54 47/33
67 621.61 424.88
68 630.89 431.22 36/25
69 640.17 437.56 42/29, 55/38, 68/47
70 649.45 443.9
71 658.73 450.24
72 668 456.59
73 677.28 462.93 34/23
74 686.56 469.27
75 695.84 475.61
76 705.12 481.95
77 714.39 488.29 65/43, 68/45
78 723.67 494.63 41/27
79 732.95 500.98 29/19, 55/36
80 742.23 507.32
81 751.5 513.66 54/35
82 760.78 520 45/29
83 770.06 526.34
84 779.34 532.68
85 788.62 539.02 41/26
86 797.89 545.37 46/29, 65/41
87 807.17 551.71
88 816.45 558.05
89 825.73 564.39 29/18
90 835 570.73 34/21, 47/29
91 844.28 577.07 57/35
92 853.56 583.41 18/11
93 862.84 589.76 51/31
94 872.12 596.1
95 881.39 602.44
96 890.67 608.78
97 899.95 615.12
98 909.23 621.46
99 918.51 627.8
100 927.78 634.15
101 937.06 640.49
102 946.34 646.83 19/11
103 955.62 653.17 33/19
104 964.89 659.51
105 974.17 665.85
106 983.45 672.2
107 992.73 678.54
108 1002.01 684.88
109 1011.28 691.22 52/29
110 1020.56 697.56
111 1029.84 703.9
112 1039.12 710.24 31/17
113 1048.39 716.59 11/6
114 1057.67 722.93 35/19
115 1066.95 729.27 63/34
116 1076.23 735.61 54/29
117 1085.51 741.95
118 1094.78 748.29
119 1104.06 754.63
120 1113.34 760.98
121 1122.62 767.32 65/34
122 1131.9 773.66
123 1141.17 780 29/15
124 1150.45 786.34 35/18, 68/35
125 1159.73 792.68
126 1169.01 799.02 55/28, 57/29
127 1178.28 805.37
128 1187.56 811.71
129 1196.84 818.05
130 1206.12 824.39
131 1215.4 830.73
132 1224.67 837.07 69/34
133 1233.95 843.41
134 1243.23 849.76
135 1252.51 856.1 68/33
136 1261.78 862.44 29/14
137 1271.06 868.78 25/12
138 1280.34 875.12
139 1289.62 881.46
140 1298.9 887.8
141 1308.17 894.15
142 1317.45 900.49
143 1326.73 906.83
144 1336.01 913.17
145 1345.29 919.51
146 1354.56 925.85
147 1363.84 932.2
148 1373.12 938.54 42/19
149 1382.4 944.88
150 1391.67 951.22
151 1400.95 957.56
152 1410.23 963.9
153 1419.51 970.24
154 1428.79 976.59
155 1438.06 982.93 39/17
156 1447.34 989.27
157 1456.62 995.61 58/25
158 1465.9 1001.95 7/3
159 1475.17 1008.29 68/29
160 1484.45 1014.63 33/14
161 1493.73 1020.98 45/19
162 1503.01 1027.32
163 1512.29 1033.66
164 1521.56 1040 65/27
165 1530.84 1046.34 46/19
166 1540.12 1052.68
167 1549.4 1059.02
168 1558.68 1065.37
169 1567.95 1071.71 47/19
170 1577.23 1078.05
171 1586.51 1084.39 5/2
172 1595.79 1090.73
173 1605.06 1097.07
174 1614.34 1103.41
175 1623.62 1109.76 23/9
176 1632.9 1116.1
177 1642.18 1122.44
178 1651.45 1128.78
179 1660.73 1135.12 47/18
180 1670.01 1141.46
181 1679.29 1147.8 29/11
182 1688.56 1154.15
183 1697.84 1160.49
184 1707.12 1166.83
185 1716.4 1173.17 62/23
186 1725.68 1179.51
187 1734.95 1185.85
188 1744.23 1192.2 63/23
189 1753.51 1198.54
190 1762.79 1204.88
191 1772.07 1211.22
192 1781.34 1217.56
193 1790.62 1223.9
194 1799.9 1230.24
195 1809.18 1236.59 54/19
196 1818.45 1242.93
197 1827.73 1249.27
198 1837.01 1255.61 26/9
199 1846.29 1261.95
200 1855.57 1268.29
201 1864.84 1274.63
202 1874.12 1280.98 62/21
203 1883.4 1287.32
204 1892.68 1293.66
205 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 205edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.16 +0.00 +2.96 -2.96 -3.16 -0.97 -0.20 +0.00 +3.15 -4.13 +2.96
Relative (%) -34.1 +0.0 +31.9 -32.0 -34.1 -10.5 -2.2 +0.0 +34.0 -44.5 +31.9
Steps
(reduced)
129
(129)
205
(0)
259
(54)
300
(95)
334
(129)
363
(158)
388
(183)
410
(0)
430
(20)
447
(37)
464
(54)
Approximation of harmonics in 205edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.55 -4.13 -2.96 -3.36 +3.02 -3.16 -3.98 -0.01 -0.97 +1.99 -0.74
Relative (%) +38.3 -44.6 -32.0 -36.2 +32.5 -34.1 -42.9 -0.1 -10.5 +21.4 -8.0
Steps
(reduced)
479
(69)
492
(82)
505
(95)
517
(107)
529
(119)
539
(129)
549
(139)
559
(149)
568
(158)
577
(167)
585
(175)