User:Akselai/SandBox
├──┼─┼╫───────┤ ├──┼─┼╫┼───────┤
Order | Number of steps | Step visualization | Chord | Intervals < 1/16 |
---|---|---|---|---|
0 | 1 | ├───────────────────────────────────────────────────────────────┤ | 1:2 | 1 |
1 | 2 | ├────────────────────┼──────────────────────────────────────────┤ | 3:4:6 | 1/3 2/3 |
2 | 4 | ├──────┼─────────────┼─────────────┼────────────────────────────┤ | 9:10:12:14:18 | 1/9 2/9 4/9 |
3 | 8 | ├─┼────┼────┼────────┼────┼────────┼────────┼───────────────────┤ | 27:28:30:32:36:38:42:46:54 | 2/27 4/27 8/27 |
4 | 15 | ├─┼─┼──┼─┼──┼──┼─────┼─┼──┼──┼─────┼──┼─────┼─────┼─────────────┤ | 81:84:86:90:92:96:100:108:110:114:118:126:130:138:146:162 | 8/81 16/81 |
5 | 20 | ├─┼─┼──┼─┼──┼──┼─┼───┼─┼──┼──┼─┼───┼──┼─┼───┼─┼───┼───┼─────────┤ | 243:252:258:270:276:288:300:308:324:330:342:
354:362:378:390:398:414:422:438:454:486 |
16/243 32/243 |
6 | 26 | ├─┼─┼──┼─┼──┼──┼─┼┼──┼─┼──┼──┼─┼┼──┼──┼─┼┼──┼─┼┼──┼┼──┼──┼──────┤ | 729:756:774:810:828:864:900:924:940:972:990:1026:1062:1086:1102:
1134:1170:1194:1210:1242:1266:1282:1314:1330:1362:1394:1458 |
64/729 |
7 | 27 | ├─┼─┼──┼─┼──┼──┼─┼┼──┼─┼──┼──┼─┼┼──┼──┼─┼┼──┼─┼┼──┼┼──┼──┼─┼────┤ | 2187:2268:2322:2430:2484:2592:2700:2772:2820:2916:2970:3078:3186:3258:
3306:3402:3510:3582:3630:3726:3798:3846:3942:3990:4086:4182:4246:4374 |
none |
order = 8
ratio = [0, 1/3]
# the "shape" of the ratio, only input integers please.
# [a, b] corresponds to the ratio 1:2^{a/(a+b)}:2,
# [a, b, c] corresponds to the ratio 1:2^{a/(a+b+c)}:2^{(a+b)/(a+b+c)}:2, etc.
c = [0, 1]
if order == 0:
c = []
for i in range(0, order-1):
b = []
for j in range(len(c)-1):
if (c[j+1]-c[j] > 1/16):
b.append([c[j] + x*(c[j+1]-c[j]) for x in ratio])
else:
b.append([c[j]])
b.append([1])
c = [x for xs in b for x in xs]
c = [1+x for x in c]
print([i / gcd(c) for i in c])
print([c[i+1]-c[i] for i in range(len(c)-1)])