← 92edo 93edo 94edo →
Prime factorization 3 × 31
Step size 12.9032 ¢ 
Fifth 54\93 (696.774 ¢) (→ 18\31)
Semitones (A1:m2) 6:9 (77.42 ¢ : 116.1 ¢)
Dual sharp fifth 55\93 (709.677 ¢)
Dual flat fifth 54\93 (696.774 ¢) (→ 18\31)
Dual major 2nd 16\93 (206.452 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

Approximation of odd harmonics in 93edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -5.18 +0.78 -1.08 +2.54 +3.52 -1.82 -4.40 -1.73 -0.74 -6.26 +3.98
Relative (%) -40.2 +6.1 -8.4 +19.7 +27.3 -14.1 -34.1 -13.4 -5.7 -48.6 +30.9
Steps
(reduced)
147
(54)
216
(30)
261
(75)
295
(16)
322
(43)
344
(65)
363
(84)
380
(8)
395
(23)
408
(36)
421
(49)

93 = 3 * 31, and 93 is a contorted 31 through the 7 limit. In the 11-limit the patent val tempers out 4000/3993 and in the 13-limit 144/143, 1188/1183 and 364/363. It provides the optimal patent val for the 11-limit prajapati and 13-limit kumhar temperaments, and the 11 and 13 limit 43&50 temperament. It is the 13th no-3s zeta peak edo.

Since 93edo has good approximations of 13th, 17th and 19th harmonics unlike 31edo (as 838.710 ¢, 103.226 ¢, and 296.774 ¢ respectively, octave-reduced), it also allows one to give a clearer harmonic identity to 31edo's excellent approximation of 13:17:19.

Scales

Meantone Chromatic

  • 116.129
  • 193.548
  • 309.677
  • 387.097
  • 503.226
  • 580.645
  • 696.774
  • 812.903
  • 890.323
  • 1006.452
  • 1083.871
  • 1200.000


Superpyth Chromatic

  • 51.613
  • 219.355
  • 270.968
  • 438.710
  • 490.323
  • 658.065
  • 709.677
  • 761.290
  • 929.032
  • 980.645
  • 1148.387
  • 1200.000


Superpyth Shailaja

  • 270.968
  • 709.677
  • 761.290
  • 980.645
  • 1200.000


Superpyth Subminor Hexatonic

  • 219.355
  • 270.968
  • 490.323
  • 709.677
  • 980.645
  • 1200.000


Superpyth Subminor Pentatonic

  • 270.968
  • 490.323
  • 709.677
  • 980.645
  • 1200.000

See Also