← 1276edo 1277edo 1278edo →
Prime factorization 1277 (prime)
Step size 0.939702 ¢ 
Fifth 747\1277 (701.958 ¢)
Semitones (A1:m2) 121:96 (113.7 ¢ : 90.21 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

1277edo is consistent to the 11-odd-limit. The equal temperament tempers out 4375/4374, 52734375/52706752, 645700815/645657712 (starscape comma) and [51 -13 -1 -10 (technologisma) in the 7-limit; 151263/151250, 759375/758912, and 2097152/2096325 in the 11-limit. It supports monzismic, supermajor, revopent, as well as the rank-3 temperament bragi.

Prime harmonics

Approximation of prime harmonics in 1277edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.003 -0.096 +0.007 +0.287 -0.434 +0.291 +0.373 +0.387 +0.337 +0.462
Relative (%) +0.0 +0.3 -10.2 +0.8 +30.6 -46.2 +31.0 +39.7 +41.1 +35.8 +49.1
Steps
(reduced)
1277
(0)
2024
(747)
2965
(411)
3585
(1031)
4418
(587)
4725
(894)
5220
(112)
5425
(317)
5777
(669)
6204
(1096)
6327
(1219)

Subsets and supersets

1277edo is the 206th prime edo. 2554edo, which divides the edostep in two, is the smallest edo distinctly consistent through the 41-odd-limit, and provides correction for harmonics 11 through 41.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [2024 -1277 | [1277 2024]] | −0.0009 | 0.0009 | 0.10 |- | 2.3.5 | [54 -37 2, [-67 -9 35 | [1277 2024 2965]] | +0.0132 | 0.0199 | 2.12 |- | 2.3.5.7 | 4375/4374, 52734375/52706752, [51 -13 -1 -10 | [1277 2024 2965 3585]] | +0.0093 | 0.0186 | 1.98 |- | 2.3.5.7.11 | 4375/4374, 151263/151250, 759375/758912, 2097152/2096325 | [1277 2024 2965 3585 4418]] | −0.0092 | 0.0405 | 4.31 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 265\1277 | 249.021 | [-27 11 3 1 | Monzismic |- | 1 | 380\1277 | 357.087 | 768/625 | Dodifo |- | 1 | 463\1277 | 435.082 | 9/7 | Supermajor Template:Rank-2 end Template:Orf

Music

Francium
  • "mututhery" from albumwithoutspaces (2024) – Spotify | Bandcamp | YouTube – monzismic[19] in 1277edo tuning