251edo

Revision as of 17:55, 13 February 2024 by Francium (talk | contribs) (+categories)
← 250edo 251edo 252edo →
Prime factorization 251 (prime)
Step size 4.78088 ¢ 
Fifth 147\251 (702.789 ¢)
Semitones (A1:m2) 25:18 (119.5 ¢ : 86.06 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

251et tempers out 1600000/1594323 (amity comma) and 562949953421312/556182861328125 (maquila comma) in the 5-limit; 4375/4374, 5120/5103, and 40500000/40353607 in the 7-limit.

Using the patent val, it tempers out 1331/1323, 1375/1372, 16896/16807, and 24057/24010 in the 11-limit; 352/351, 676/675, 847/845, and 1573/1568 in the 13-limit.

Using the 251e val, it tempers out 540/539, 5632/5625, 6250/6237, and 12005/11979 in the 11-limit; 364/363, 676/675, 1716/1715, and 3584/3575 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 251edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.83 +0.94 +1.69 +1.67 -1.52 +0.91 +1.77 +0.22 -1.10 -2.26 -1.98
Relative (%) +17.4 +19.6 +35.4 +34.9 -31.7 +19.0 +37.0 +4.7 -23.0 -47.2 -41.4
Steps
(reduced)
398
(147)
583
(81)
705
(203)
796
(43)
868
(115)
929
(176)
981
(228)
1026
(22)
1066
(62)
1102
(98)
1135
(131)

Subsets and supersets

251edo is the 54th prime EDO.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [398 -251 251 398] -0.2630 0.2630 5.50
2.3.5 [9 -13 5, [49 -6 -17 251 398 583] -0.3099 0.2247 4.70
2.3.5.7 4375/4374, 5120/5103, 6144/6125 251 398 583 705] -0.3830 0.2322 4.86

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 71\251 339.44 243/200 Amity
1 75\251 358.57 315/256 Restles
1 91\251 435.06 9/7 Supermajor
1 96\251 458.96 125/96 Majvam
1 112\251 535.46 512/375 Maquila
1 117\251 559.26 864/625 Tritriple

Music

Francium