Commas
Distincly tempered out commas
12edo is distincly consistent in the 5-odd-limit. There are precisely 14 distinct tempered out commas, which are ratios formed by sequences of intervals where every note is unique, except for the starting and ending notes, which remain the same.
Other tempered out commas
12edo remains consistent within the 9-odd-limit. Therefore, it's worthwhile to explore ratios tempered out in the 7-limit, particularly those with simple factorizations that facilitate quick harmonic operations.
7-limit commas tempered out in 12-tet with Benedetti height < 2**16
Ratio
|
Factorization
|
Cents
|
Limit
|
- Cents
|
1 / Factorization
|
1 / Ratio
|
36/35
|
22 • 32 • 5-1 • 7-1
|
48.770
|
7
|
-48.770
|
2-2 • 3-2 • 51 • 71
|
35/36
|
50/49
|
21 • 52 • 7-2
|
34.976
|
7
|
-34.976
|
2-1 • 5-2 • 72
|
49/50
|
64/63
|
26 • 3-2 • 7-1
|
27.264
|
7
|
-27.264
|
2-6 • 32 • 71
|
63/64
|
126/125
|
21 • 32 • 5-3 • 71
|
13.795
|
7
|
-13.795
|
2-1 • 3-2 • 53 • 7-1
|
125/126
|
225/224
|
2-5 • 32 • 52 • 7-1
|
7.712
|
7
|
-7.712
|
25 • 3-2 • 5-2 • 71
|
224/225
|
256/245
|
28 • 5-1 • 7-2
|
76.034
|
7
|
-76.034
|
2-8 • 51 • 72
|
245/256
|
Modes
Modes of limited transposition
Period
|
Modes
|
1\12
|
1
|
2\12
|
2
|
3\12
|
3 ; 1 2
|
4\12
|
4 ; 1 3 ; 1 1 2
|
6\12
|
6 ; 1 5 ; 2 4 ; 1 1 4 ; 1 2 3 ; 1 3 2 ; 1 1 1 3 ; 1 1 2 2 ; 1 1 1 1 2
|
12\12
|
12
|
All commas tempered out throughout series of 5-odd-limit intervals with all notes distinct and played
Period
|
Mode
|
5-limit commas tempered out
|
1\12
|
1 1 1 1 1 1 1 1 1 1 1 1
|
All commas (see below)
|
2\12
|
2 2 2 2 2 2
|
None (128/125 for its truncation)
|
3\12
|
1 2 1 2 1 2 1 2
|
648/625
|
4\12
|
3 1 3 1 3 1
|
128/125
|
2 1 1 2 1 1 2 1 1
|
6\12
|
1 4 1 1 4 1
|
2048/2025
|
1 2 3 1 2 3
|
648/625
|
1 3 2 1 3 2
|
1 1 3 1 1 1 3 1
|
81/80, 128/125, 2048/2025
|
1 2 2 1 1 2 2 1
|
81/80, 648/625, 2048/2025
|
1 1 2 1 1 1 1 2 1 1
|
81/80, 128/125, 648/625, 2048/2025, 6561/6250, 82944/78125, 10616832/9765625
|
Period
|
Mode
|
Perfect circle
|
Ratio
|
Plagal circle
|
1\12
|
1
|
|
2\12
|
2
|
None
|
3\12
|
1 2
|
3-4 • 54
|
4 5 4 5 4 5 4 5
|
648/625
|
7 8 7 8 7 8 7 8
|
34 • 5-4
|
9 7 9 5 9 7 9 5
|
7 3 5 3 7 3 5 3
|
4 9 8 9 4 9 8 9
|
3 4 3 8 3 4 3 8
|
4 5 4 5 9 7 9 5
|
7 3 5 3 7 8 7 8
|
4 9 8 9 4 5 4 5
|
7 8 7 8 3 4 3 8
|
4 9 8 9 9 7 9 5
|
7 3 5 3 3 4 3 8
|
5 9 7 9 9 8 9 4
|
8 3 4 3 3 5 3 7
|
4\12
|
1 3
|
5-3
|
3 5 3 5 3 5
|
128/125
|
7 9 7 9 7 9
|
53
|
8 7 8 8 9 8
|
4 3 4 4 5 4
|
3 5 3 8 9 8
|
4 3 4 9 7 9
|
8 7 8 5 3 5
|
7 9 7 4 5 4
|
1 1 2
|
3 8 8 9 4 9 8 8 3
|
9 4 4 3 8 3 4 4 9
|
7 8 8 5 4 5 8 8 7
|
5 4 4 7 8 7 4 4 5
|
3 8 8 9 4 5 8 8 7
|
5 4 4 7 8 3 4 4 9
|
7 8 8 5 4 9 8 8 3
|
9 4 4 3 8 7 4 4 5
|
5 8 8 7 4 7 8 8 5
|
7 4 4 5 8 5 4 4 7
|
9 8 8 3 4 3 8 8 9
|
3 4 4 9 8 9 4 4 3
|
5 8 8 7 4 3 8 8 9
|
3 4 4 9 8 5 4 4 7
|
9 8 8 3 4 7 8 8 5
|
7 4 4 5 8 9 4 4 3
|
7 8 8 9 8 9 8 8 7
|
5 4 4 3 4 3 4 4 5
|
9 8 8 7 8 7 8 8 9
|
3 4 4 5 4 5 4 4 3
|
7 8 8 9 5 3 5 8 7
|
5 4 7 9 7 3 4 4 5
|
9 8 8 7 3 5 3 8 9
|
3 4 9 7 9 5 4 4 3
|
7 8 5 3 5 9 8 8 7
|
5 4 4 3 7 9 7 4 5
|
9 8 3 5 3 7 8 8 9
|
3 4 4 5 9 7 9 4 3
|
6\12
|
1 1 4
|
3-4 • 5-2
|
5 8 5 5 8 5
|
2048/2025
|
7 4 7 7 4 7
|
34 • 52
|
1 2 3
|
3-4 • 54
|
9 4 5 9 4 5
|
648/625
|
7 8 3 7 8 3
|
34 • 5-4
|
1 3 2
|
4 9 5 4 9 5
|
7 3 8 7 3 8
|
1 1 1 3
|
3-4 • 51
|
8 5 8 5 4 9 4 5
|
81/80
|
7 8 3 8 7 4 7 4
|
34 • 5-1
|
5-3
|
8 7 3 7 8 5 5 5
|
128/125
|
7 7 7 4 5 9 5 4
|
53
|
3-4 • 5-2
|
5 3 5 5 5 3 5 5
|
2048/2025
|
7 7 9 7 7 7 9 7
|
34 • 52
|
8 9 8 5 8 9 8 5
|
7 4 3 4 7 4 3 4
|
8 9 8 5 5 3 5 5
|
7 7 9 7 7 4 3 4
|
1 1 2 2
|
3-4 • 51
|
5 8 8 9 5 4 4 5
|
81/80
|
7 8 8 7 3 4 4 7
|
34 • 5-1
|
5 4 4 5 9 8 8 5
|
7 4 4 3 7 8 8 7
|
3-4 • 54
|
5 4 4 5 5 4 4 5
|
648/625
|
7 8 8 7 7 8 8 7
|
34 • 5-4
|
3-4 • 5-2
|
5 8 8 9 9 8 8 5
|
2048/2025
|
7 4 4 3 3 4 4 7
|
34 • 52
|
5 8 8 9 5 8 8 9
|
3 4 4 7 3 4 4 7
|
9 8 8 5 9 8 8 5
|
7 4 4 3 7 4 4 3
|
1 1 1 1 2
|
130 perfect circles, 130 plagal circles
|
Modes based on the circle of 3-odd-limit
Alteration
|
Modes
|
5-limit commas tempered out
|
Penta MOS
|
2 2 3 2 3
|
81/80
|
Penta b7
|
2 2 3 3 2
|
None
|
Penta #4 b7
|
2 2 2 4 2
|
None
|
Ion
|
2 2 1 2 2 2 1
|
81/80
|
Ion b3
|
2 1 2 2 2 2 1
|
81/80, 648/625
|
Ion b6
|
2 2 1 2 1 3 1
|
81/80, 128/125, 648/625
|
Ion b3 b6
|
2 1 2 2 1 3 1
|
81/80, 128/125, 648/625
|
Ion b2
|
1 3 1 2 2 2 1
|
128/125
|
Ion b2 b3
|
1 2 2 2 2 2 1
|
None
|
Ion b2 b6
|
1 3 1 2 1 3 1
|
128/125
|
Ion b2 b3 b6
|
1 2 2 2 1 3 1
|
128/125
|
Schisma
|
2 2 1 1 1 2 1 1 1
|
81/80, 128/125, 648/625, 2048/2025, 6561/6250, 32805/32768
|
Mode
|
Perfect circle
|
Ratio
|
Plagal circle
|
2 2 3 2 3
|
3-4 • 51
|
5 5 4 5 5
|
81/80
|
7 7 8 7 7
|
34 • 5-1
|
5 9 8 9 5
|
7 3 4 3 7
|
2 2 3 3 2
|
None
|
2 2 2 4 2
|
2 2 1 2 2 2 1
|
3-4 • 51
|
5 4 5 8 5 4 5
|
81/80
|
7 8 7 4 7 8 7
|
34 • 5-1
|
5 4 5 9 5 3 5
|
7 9 7 3 7 8 7
|
5 3 5 9 5 4 5
|
7 8 7 3 7 9 7
|
9 8 9 8 9 8 9
|
3 4 3 4 3 4 3
|
9 8 5 4 5 8 9
|
3 4 7 8 7 4 3
|
9 8 9 5 3 5 9
|
3 7 9 7 3 4 3
|
9 5 3 5 9 8 9
|
3 4 3 7 9 7 3
|
9 8 5 4 5 9 8
|
4 3 7 8 7 4 3
|
8 9 5 4 5 8 9
|
3 4 7 8 7 3 4
|
2 1 2 2 2 2 1
|
3-4 • 51
|
8 9 9 8 9 9 8
|
81/80
|
4 3 3 4 3 3 4
|
34 • 5-1
|
8 9 5 4 5 9 8
|
4 3 7 8 7 3 4
|
3-4 • 54
|
4 4 9 5 4 5 5
|
648/625
|
7 7 8 7 3 8 8
|
34 • 5-4
|
5 5 4 5 9 4 4
|
8 8 3 7 8 7 7
|
4 4 5 9 8 9 9
|
3 3 4 3 7 8 8
|
9 9 8 9 5 4 4
|
8 8 7 3 4 3 3
|
2 2 1 2 1 3 1
|
3-4 • 51
|
8 8 9 9 9 8 9
|
81/80
|
3 4 3 3 3 4 4
|
34 • 5-1
|
5 5 9 9 9 8 3
|
9 4 3 3 3 7 7
|
5 8 9 9 9 5 3
|
9 7 3 3 3 4 7
|
9 9 5 4 5 8 8
|
4 4 7 8 7 3 3
|
8 8 5 9 5 4 9
|
3 8 7 3 7 4 4
|
5-3
|
7 3 5 5 5 3 8
|
128/125
|
4 9 7 7 7 9 5
|
53
|
8 5 3 3 3 5 9
|
3 7 9 9 9 7 4
|
3-4 • 54
|
4 4 9 9 9 8 5
|
648/625
|
7 4 3 3 3 8 8
|
34 • 5-4
|
4 7 9 9 9 5 5
|
7 7 3 3 3 5 8
|
5 9 5 4 5 4 4
|
8 8 7 8 7 3 7
|
5 9 5 9 7 9 4
|
8 3 5 3 7 3 7
|
4 5 9 9 8 9 4
|
8 3 4 3 3 7 8
|
2 1 2 2 1 3 1
|
3-4 • 51
|
9 8 9 9 9 8 8
|
81/80
|
4 4 3 3 3 4 3
|
34 • 5-1
|
3 8 9 9 9 5 5
|
7 7 3 3 3 4 9
|
3 5 9 9 9 8 5
|
7 4 3 3 3 7 9
|
8 8 5 4 5 9 9
|
3 3 7 8 7 4 4
|
9 4 5 9 5 8 8
|
4 4 7 3 7 8 3
|
5-3
|
8 3 5 5 5 3 7
|
128/125
|
5 9 7 7 7 9 4
|
53
|
9 5 3 3 3 5 8
|
4 7 9 9 9 7 3
|
3-4 • 54
|
5 8 9 9 9 4 4
|
648/625
|
8 8 3 3 3 4 7
|
34 • 5-4
|
5 5 9 9 9 7 4
|
8 5 3 3 3 7 7
|
4 4 5 4 5 9 5
|
7 3 7 8 7 8 8
|
4 9 7 9 5 9 5
|
7 3 7 3 5 3 8
|
4 9 8 9 9 5 4
|
8 7 3 3 4 3 8
|
1 3 1 2 2 2 1
|
5-3
|
8 7 7 8 5 5 8
|
128/125
|
4 7 7 4 5 5 4
|
53
|
8 3 7 8 5 9 8
|
4 3 7 4 5 9 4
|
1 2 2 2 2 2 1
|
None
|
1 3 1 2 1 3 1
|
5-3
|
5 8 7 8 7 8 5
|
128/125
|
7 4 5 4 5 4 7
|
53
|
7 8 5 8 9 8 3
|
9 4 3 4 7 4 5
|
3 8 9 8 5 8 7
|
5 4 7 4 3 4 9
|
5 8 3 4 3 8 5
|
7 4 9 8 9 4 7
|
5 5 8 7 3 5 3
|
9 7 9 5 4 7 7
|
3 5 3 7 8 5 5
|
7 7 4 5 9 7 9
|
1 2 2 2 1 3 1
|
5-3
|
8 5 5 8 7 7 8
|
128/125
|
4 5 5 4 7 7 4
|
53
|
8 9 5 8 7 3 8
|
4 9 5 4 7 3 4
|
2 2 1 1 1 2 1 1 1
|
70 perfect circles, 70 plagal circles
|
Blues scales
Added notes
|
Modes
|
5-limit commas tempered out
|
None
|
2 2 3 2 3
|
81/80
|
#1
|
1 1 2 3 2 3
|
81/80
|
b3
|
2 1 1 3 2 3
|
81/80
|
#5/b6
|
2 2 3 1 1 3
|
648/625, 2048/2025
|
#1 b3
|
1 1 1 1 3 2 3
|
81/80
|
#1 b3 #5/b6
|
1 1 1 1 3 1 1 3
|
81/80, 648/625, 2048/2025
|
Mode
|
Perfect circle
|
Ratio
|
Plagal circle
|
2 2 3 1 1 3
|
3-4 • 54
|
5 9 4 4 9 5
|
648/625
|
7 3 8 8 3 7
|
34 • 5-4
|
3-4 • 5-2
|
5 5 8 8 5 5
|
2048/2025
|
7 7 4 4 7 7
|
34 • 52
|
1 1 2 3 2 3
|
3-4 • 51
|
4 9 8 5 5 5
|
81/80
|
7 7 7 4 3 8
|
34 • 5-1
|
2 1 1 3 2 3
|
5 5 5 8 9 4
|
8 3 4 7 7 7
|
1 1 1 1 3 2 3
|
5 8 9 4 9 8 5
|
7 4 3 8 3 4 7
|
1 1 1 1 3 1 1 3
|
5 8 9 4 4 5 8 5
|
7 4 7 8 8 3 4 7
|
5 8 5 4 4 9 8 5
|
7 4 3 8 8 7 4 7
|
3-4 • 54
|
5 9 9 7 7 9 9 5
|
648/625
|
7 3 3 5 5 3 3 7
|
34 • 5-4
|
3-4 • 5-2
|
5 3 5 5 5 5 3 5
|
2048/2025
|
7 9 7 7 7 7 9 7
|
34 • 52
|
8 9 8 5 5 8 9 8
|
4 3 4 7 7 4 3 4
|
5 3 5 5 5 8 9 8
|
4 3 4 7 7 7 9 7
|
8 9 8 5 5 5 3 5
|
7 9 7 7 7 4 3 4
|
5 5 8 5 5 9 8 3
|
9 4 3 7 7 4 7 7
|
3 8 9 5 5 8 5 5
|
7 7 4 7 7 3 4 9
|
MOS series of 5-odd-limit intervals tempering out 5-limit commas
Perfect circle
|
Ratio
|
Plagal circle
|
3-4 • 51
|
9 5 5 5
|
81/80
|
7 7 7 3
|
34 • 5-1
|
5 5 4 5 5
|
7 7 8 7 7
|
9 8 9 8 9 8 9
|
3 4 3 4 3 4 3
|
5-3
|
8 8 8
|
128/125
|
4 4 4
|
53
|
3 5 3 5 3 5
|
7 9 7 9 7 9
|
3-4 • 54
|
9 9 9 9
|
648/625
|
3 3 3 3
|
34 • 5-4
|
4 5 4 5 4 5 4 5
|
7 8 7 8 7 8 7 8
|
3-4 • 5-2
|
5 8 5 5 8 5
|
2048/2025
|
7 4 7 7 4 7
|
34 • 52
|
3 5 5 5 3 5 5 5
|
7 7 7 9 7 7 7 9
|
8 9 8 9 8 8 9 8 9 8
|
4 3 4 3 4 4 3 4 3 4
|
3-8 • 55
|
9 9 5 9 9 5 9 5
|
6561/6250
|
7 3 7 3 3 7 3 3
|
38 • 5-5
|
9 8 9 9 9 8 9 9 9 8 9
|
3 4 3 3 3 4 3 3 3 4 3
|
3-8 • 5-1
|
5 5 5 5 8 5 5 5 5
|
32805/32768
|
7 7 7 7 4 7 7 7 7
|
38 • 51
|
3 5 5 5 5 5 5 5 5 5
|
7 7 7 7 7 7 7 7 7 9
|
3-4 • 57
|
9 4 9 4 9 4 9
|
82944/78125
|
3 8 3 8 3 8 3
|
34 • 5-7
|
9 9 9 7 9 9 7 9 9 7
|
5 3 3 5 3 3 5 3 3 3
|
4 5 4 4 5 4 5 4 4 5 4
|
8 7 8 8 7 8 7 8 8 7 8
|
3-4 • 5-5
|
8 5 8 5 8 5 8 5 8
|
262144/253125
|
4 7 4 7 4 7 4 7 4
|
34 • 55
|
3-12 • 56
|
9 5 9 5 9 5 9 5 9 5 9 5
|
531441/500000
|
7 3 7 3 7 3 7 3 7 3 7 3
|
312 • 5-6
|
3-12
|
5 5 5 5 5 5 5 5 5 5 5 5
|
531441/524288
|
7 7 7 7 7 7 7 7 7 7 7 7
|
312
|
3-12 • 59
|
9 9 9 5 9 9 9 5 9 9 9 5
|
2125764/1953125
|
7 3 3 3 7 3 3 3 7 3 3 3
|
312 • 5-9
|
3-4 • 510
|
4 9 4 9 4 4 9 4 9 4
|
10616832/9765625
|
8 3 8 3 8 8 3 8 3 8
|
34 • 5-10
|
3-4 • 5-8
|
8 8 5 8 8 5 8 8 5 8 8 5
|
33554432/31640625
|
7 4 4 7 4 4 7 4 4 7 4 4
|
34 • 58
|
3-8 • 511
|
9 4 9 9 9 4 9 9 9 4 9
|
53747712/48828125
|
3 8 3 3 3 8 3 3 3 8 3
|
38 • 5-11
|